Suppr超能文献

基于兴奋-抑制相互作用的网格细胞放电连续吸引子网络模型。

Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions.

作者信息

Shipston-Sharman Oliver, Solanka Lukas, Nolan Matthew F

机构信息

Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK.

出版信息

J Physiol. 2016 Nov 15;594(22):6547-6557. doi: 10.1113/JP270630. Epub 2016 Feb 24.

Abstract

Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid-like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid-like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta-nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid-like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing.

摘要

内嗅皮层中的神经元通过具有网格状组织的空间放电场来编码位置。通过对内嗅回路的实验和理论研究,已经解决了识别网格放电机制的挑战。在这里,我们讨论连续吸引子网络模型的证据,该模型通过兴奋性和抑制性细胞之间的突触相互作用来解释网格放电。这些模型假设,网格状放电模式是根据速度输入计算位置的结果,还需要额外的空间输入来对抗吸引子状态下的漂移。我们关注连续吸引子网络的特性,这些特性通过明确考虑兴奋性和抑制性神经元、它们的连接性以及它们的膜电位动态而得以揭示。这种详细程度的模型可以解释θ嵌套γ振荡以及网格放电,预测中间神经元和兴奋性细胞的空间放电,展示γ振荡如何独立于空间计算进行调制,揭示神经元噪声的关键作用,并证明网络中只有一部分兴奋性细胞需要具有网格状放电场。根据详细网络模型的预测评估实验数据,对于确定介导网格放电的机制将具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb77/5108899/0fdaab763423/TJP-594-6547-g002.jpg

相似文献

1
Continuous attractor network models of grid cell firing based on excitatory-inhibitory interactions.
J Physiol. 2016 Nov 15;594(22):6547-6557. doi: 10.1113/JP270630. Epub 2016 Feb 24.
3
Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex.
Neuron. 2016 Jan 6;89(1):194-208. doi: 10.1016/j.neuron.2015.11.029. Epub 2015 Dec 17.
4
Recurrent inhibitory circuitry as a mechanism for grid formation.
Nat Neurosci. 2013 Mar;16(3):318-24. doi: 10.1038/nn.3310. Epub 2013 Jan 20.
6
Ten Years of Grid Cells.
Annu Rev Neurosci. 2016 Jul 8;39:19-40. doi: 10.1146/annurev-neuro-070815-013824. Epub 2016 Mar 9.
7
Accurate path integration in continuous attractor network models of grid cells.
PLoS Comput Biol. 2009 Feb;5(2):e1000291. doi: 10.1371/journal.pcbi.1000291. Epub 2009 Feb 20.
9
Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
Neurobiol Learn Mem. 2016 Mar;129:83-98. doi: 10.1016/j.nlm.2015.09.004. Epub 2015 Sep 15.
10
Cellular mechanisms of spatial navigation in the medial entorhinal cortex.
Nat Neurosci. 2013 Mar;16(3):325-31. doi: 10.1038/nn.3340. Epub 2013 Feb 10.

引用本文的文献

3
A spatial transformation-based CAN model for information integration within grid cell modules.
Cogn Neurodyn. 2024 Aug;18(4):1861-1876. doi: 10.1007/s11571-023-10047-z. Epub 2024 Jan 2.
5
Modeling the grid cell activity based on cognitive space transformation.
Cogn Neurodyn. 2024 Jun;18(3):1227-1243. doi: 10.1007/s11571-023-09972-w. Epub 2023 Apr 20.
7
Spatial periodicity in grid cell firing is explained by a neural sequence code of 2-D trajectories.
bioRxiv. 2025 Jan 25:2023.05.30.542747. doi: 10.1101/2023.05.30.542747.
8
Empirically validated theoretical analysis of visual-spatial perception under change of nervous system arousal.
Front Comput Neurosci. 2023 May 12;17:1136985. doi: 10.3389/fncom.2023.1136985. eCollection 2023.
10
Simulation of oscillatory dynamics induced by an approximation of grid cell output.
Rev Neurosci. 2022 Nov 4;34(5):517-532. doi: 10.1515/revneuro-2022-0107. Print 2023 Jul 26.

本文引用的文献

1
Speed cells in the medial entorhinal cortex.
Nature. 2015 Jul 23;523(7561):419-24. doi: 10.1038/nature14622. Epub 2015 Jul 15.
2
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
4
Environmental boundaries as an error correction mechanism for grid cells.
Neuron. 2015 May 6;86(3):827-39. doi: 10.1016/j.neuron.2015.03.039. Epub 2015 Apr 16.
5
GABAergic projections from the medial septum selectively inhibit interneurons in the medial entorhinal cortex.
J Neurosci. 2014 Dec 10;34(50):16739-43. doi: 10.1523/JNEUROSCI.1612-14.2014.
6
Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex.
Neuron. 2014 Dec 17;84(6):1191-7. doi: 10.1016/j.neuron.2014.11.009. Epub 2014 Dec 4.
7
The functional micro-organization of grid cells revealed by cellular-resolution imaging.
Neuron. 2014 Dec 3;84(5):1079-90. doi: 10.1016/j.neuron.2014.10.048. Epub 2014 Nov 11.
8
A model of grid cell development through spatial exploration and spike time-dependent plasticity.
Neuron. 2014 Jul 16;83(2):481-495. doi: 10.1016/j.neuron.2014.06.018.
9
Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex.
Nat Neurosci. 2014 May;17(5):710-8. doi: 10.1038/nn.3696. Epub 2014 Apr 6.
10
A hybrid oscillatory interference/continuous attractor network model of grid cell firing.
J Neurosci. 2014 Apr 2;34(14):5065-79. doi: 10.1523/JNEUROSCI.4017-13.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验