Sutton Nate, Gutiérrez-Guzmán Blanca, Dannenberg Holger, Ascoli Giorgio A
Bioengineering Department, at George Mason University.
Interdisciplinary Program in Neuroscience at George Mason University.
bioRxiv. 2024 May 1:2024.04.29.591748. doi: 10.1101/2024.04.29.591748.
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal was to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software is released as open source to enable broad community reuse and encourage novel applications.
具有数据驱动生理细节的计算模拟能够促进对认知所涉及神经机制的更深入理解。在此,我们利用来自Hippocampome.org的丰富细胞特性,通过内侧内嗅皮层回路活动的脉冲连续吸引子网络模型来研究空间编码的神经机制。主要目标是探究添加此类现实约束是否能产生与真实神经元中测量到的相似放电模式。这项工作中纳入的生物学特征包括主要由轴突和树突形态定义的神经元类型的兴奋性、连接性和突触信号传导。我们研究特定神经元类型中的脉冲动力学以及神经元群体之间的突触活动。对啮齿动物海马结构进行建模,既能将模拟控制在计算上合理的规模,又能将参数和结果与实验测量相锚定。我们的模型生成的网格细胞活动与已发表数据集以及为本研究进行的新实验中在活体行为动物中记录的网格场的间距、大小和放电率非常匹配。我们的模拟还重现了这些特性的不同尺度,例如在内侧内嗅皮层背腹轴上发现的小尺度和大尺度。对神经元和突触模型参数的计算探索表明,广泛的神经特性在模拟中产生了网格场。这些结果表明,网格细胞的连续吸引子网络模型与从Hippocampome.org获取数据驱动的生物物理和解剖学参数的脉冲神经网络实现方式兼容。该软件作为开源发布,以实现广泛的社区复用并鼓励新的应用。