Suppr超能文献

通过在白腐伞菌平菇中进行高效正向遗传学鉴定出两个导致木质素降解系统缺陷的突变。

Identification of two mutations that cause defects in the ligninolytic system through an efficient forward genetics in the white-rot agaricomycete Pleurotus ostreatus.

作者信息

Nakazawa Takehito, Izuno Ayako, Kodera Rina, Miyazaki Yasumasa, Sakamoto Masahiro, Isagi Yuji, Honda Yoichi

机构信息

Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.

Department of Applied Microbiology, Forestry and Forest Product Research Institute, P O Box 16, Tsukuba-Norin, 305-8687, Japan.

出版信息

Environ Microbiol. 2017 Jan;19(1):261-272. doi: 10.1111/1462-2920.13595. Epub 2017 Jan 12.

Abstract

White-rot fungi play an important role in the global carbon cycle because they are the species that almost exclusively biodegrade wood lignin in nature. Lignin peroxidases (LiPs), manganese peroxidases (MnPs) and versatile peroxidases (VPs) are considered key players in the ligninolytic system. Apart from LiPs, MnPs and VPs, however, only few other factors involved in the ligninolytic system have been investigated using molecular genetics, implying the existence of unidentified elements. By combining classical genetic techniques with next-generation sequencing technology, they successfully showed an efficient forward genetics approach to identify mutations causing defects in the ligninolytic system of the white-rot fungus Pleurotus ostreatus. In this study, they identified two genes - chd1 and wtr1 - mutations in which cause an almost complete loss of Mn -dependent peroxidase activity. The chd1 gene encodes a putative chromatin modifier, and wtr1 encodes an agaricomycete-specific protein with a putative DNA-binding domain. The chd1-1 mutation and targeted disruption of wtr1 hamper the ability of P. ostreatus to biodegrade wood lignin. Examination of the effects of the aforementioned mutation and disruption on the expression of certain MnP/VP genes suggests that a complex mechanism underlies the ligninolytic system in P. ostreatus.

摘要

白腐真菌在全球碳循环中发挥着重要作用,因为它们是自然界中几乎唯一能生物降解木材木质素的物种。木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)和多功能过氧化物酶(VP)被认为是木质素降解系统中的关键因素。然而,除了LiP、MnP和VP之外,利用分子遗传学方法研究参与木质素降解系统的其他因素很少,这意味着可能存在尚未被发现的因素。通过将经典遗传学技术与下一代测序技术相结合,他们成功展示了一种有效的正向遗传学方法,用于鉴定导致白腐真菌糙皮侧耳木质素降解系统缺陷的突变。在这项研究中,他们鉴定出两个基因——chd1和wtr1——其中的突变会导致几乎完全丧失锰依赖性过氧化物酶活性。chd1基因编码一种假定的染色质修饰因子,wtr1编码一种具有假定DNA结合结构域的伞菌纲特异性蛋白质。chd1-1突变和wtr1的靶向破坏会阻碍糙皮侧耳生物降解木材木质素的能力。对上述突变和破坏对某些MnP/VP基因表达的影响进行检查表明,糙皮侧耳的木质素降解系统存在复杂的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验