文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用肿瘤微环境:既然 EPR 效应在临床上失败了,那么纳米医学的未来在哪里?

To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?

机构信息

Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.

出版信息

J Control Release. 2016 Dec 28;244(Pt A):108-121. doi: 10.1016/j.jconrel.2016.11.015. Epub 2016 Nov 18.


DOI:10.1016/j.jconrel.2016.11.015
PMID:27871992
Abstract

Tumor targeting by nanomedicine-based therapeutics has emerged as a promising approach to overcome the lack of specificity of conventional chemotherapeutic agents and to provide clinicians the ability to overcome shortcomings of current cancer treatment. The major underlying mechanism of the design of nanomedicines was the Enhanced Permeability and Retention (EPR) effect, considered as the "royal gate" in the drug delivery field. However, after the publication of thousands of research papers, the verdict has been handed down: the EPR effect works in rodents but not in humans! Thus the basic rationale of the design and development of nanomedicines in cancer therapy is failing making it necessary to stop claiming efficacy gains via the EPR effect, while tumor targeting cannot be proved in the clinic. It is probably time to dethrone the EPR effect and to ask the question: what is the future of nanomedicines without the EPR effect? The aim of this review is to provide a general overview on (i) the current state of the EPR effect, (ii) the future of nanomedicine and (iii) the strategies of modulation of the tumor microenvironment to improve the delivery of nanomedicine.

摘要

基于纳米医学的治疗方法的肿瘤靶向已成为一种有前途的方法,可以克服传统化疗药物缺乏特异性的问题,并为临床医生提供克服当前癌症治疗缺点的能力。纳米药物设计的主要潜在机制是增强的通透性和保留(EPR)效应,被认为是药物输送领域的“皇家大门”。然而,在发表了数千篇研究论文后,判决已经下达:EPR 效应在啮齿动物中起作用,但在人类中不起作用!因此,纳米医学在癌症治疗中的设计和开发的基本原理是失败的,这使得通过 EPR 效应声称疗效增益变得没有必要,而肿瘤靶向在临床上无法得到证明。也许是时候废除 EPR 效应了,并提出这样一个问题:没有 EPR 效应,纳米医学的未来会是什么样子?本文综述的目的是提供关于(i)EPR 效应的现状,(ii)纳米医学的未来,和(iii)肿瘤微环境的调制策略以改善纳米医学的传递的概述。

相似文献

[1]
To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?

J Control Release. 2016-11-18

[2]
The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.

Theranostics. 2020

[3]
Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.

Int J Mol Sci. 2023-6-13

[4]
Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment.

Theranostics. 2019-10-17

[5]
Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.

J Drug Target. 2007

[6]
Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

Adv Drug Deliv Rev. 2017-7-8

[7]
Nanomedicines Targeting the Tumor Microenvironment.

Cancer J. 2015

[8]
Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment.

Med Res Rev. 2020-5

[9]
Nanomedicine therapeutic approaches to overcome cancer drug resistance.

Adv Drug Deliv Rev. 2013-10-10

[10]
Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.

J Control Release. 2022-5

引用本文的文献

[1]
Dynamic Susceptibility Contrast Magnetic Resonance Imaging with Carbon-Encapsulated Iron Nanoparticles Navigated to Integrin Alfa V Beta 3 Receptors in Rat Glioma.

Nanomaterials (Basel). 2025-8-18

[2]
Synergistic strategies in photodynamic combination therapy for cancer: mechanisms, nanotechnology, and clinical translation.

Front Oncol. 2025-7-30

[3]
Smart Nanoarchitectures for Precision RNA Delivery: Harnessing Endogenous and Exogenous Stimuli in Cancer Treatment.

Theranostics. 2025-7-2

[4]
Carbon Nanotubes as Excellent Adjuvants for Anticancer Therapeutics and Cancer Diagnosis: A Plethora of Laboratory Studies Versus Few Clinical Trials.

Cells. 2025-7-9

[5]
Engineered PAM-SPION Nanoclusters for Enhanced Cancer Therapy: Integrating Magnetic Targeting with pH-Responsive Drug Release.

Molecules. 2025-6-28

[6]
Single-cell analysis of the decidua unveils the mechanism of anti-inflammatory exosomes for chorioamnionitis in nonhuman primates.

Sci Adv. 2025-7-4

[7]
Comparison of Micelles Single- and Dual-Targeted with Folic Acid and Biotin as the Delivery System of Docetaxel─The Influence of the Type and Amount of the Ligand on Morphology, Physicochemical Properties, and Cytotoxicity.

Mol Pharm. 2025-8-4

[8]
Precise nanoscale fabrication technologies, the "last mile" of medicinal development.

Acta Pharm Sin B. 2025-5

[9]
Exosomes in cancer nanomedicine: biotechnological advancements and innovations.

Mol Cancer. 2025-6-7

[10]
Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery.

Mol Cancer. 2025-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索