Loiko Veronika, Wagener Johannes
Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany.
Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
Antimicrob Agents Chemother. 2017 Jan 24;61(2). doi: 10.1128/AAC.01690-16. Print 2017 Feb.
Echinocandins target the fungal cell wall by inhibiting biosynthesis of the cell wall carbohydrate β-1,3-glucan. This antifungal drug class exhibits a paradoxical effect that is characterized by the resumption of growth of otherwise susceptible strains at higher drug concentrations (approximately 4 to 32 μg/ml). The nature of this phenomenon is still unknown. In this study, we analyzed the paradoxical effect of the echinocandin caspofungin on the pathogenic mold Aspergillus fumigatus Using a conditional fks1 mutant, we show that very high caspofungin concentrations exert an additional antifungal activity besides inhibition of the β-1,3-glucan synthase. This activity could explain the suppression of paradoxical growth at very high caspofungin concentrations. Additionally, we found that exposure to inhibitory caspofungin concentrations always causes initial growth deprivation independently of the capability of the drug concentration to induce the paradoxical effect. Paradoxically growing hyphae emerge from microcolonies essentially devoid of β-1,3-glucan. However, these hyphae expose β-1,3-glucan again, suggesting that β-1,3-glucan synthesis is restored. In agreement with this hypothesis, we found that expression of the β-1,3-glucan synthase Fks1 is an essential requirement for the paradoxical effect. Surprisingly, overexpression of fks1 renders A. fumigatus more susceptible, whereas reduced expression leads to hyphae that are more resistant to the growth-inhibitory and limited fungicidal activity of caspofungin. Upregulation of chitin synthesis appears to be of minor importance for the paradoxical effect, since paradoxically growing hyphae exhibit significantly less chitin than the growth-deprived parental microcolonies. Our results argue for a model where the paradoxical effect primarily relies on recovery of β-1,3-glucan synthase activity.
棘白菌素通过抑制细胞壁碳水化合物β-1,3-葡聚糖的生物合成来靶向真菌细胞壁。这类抗真菌药物表现出一种矛盾效应,其特征是在较高药物浓度(约4至32μg/ml)下原本敏感的菌株恢复生长。这种现象的本质仍然未知。在本研究中,我们分析了棘白菌素卡泊芬净对致病性霉菌烟曲霉的矛盾效应。使用条件性fks1突变体,我们表明,除了抑制β-1,3-葡聚糖合酶外,非常高的卡泊芬净浓度还具有额外的抗真菌活性。这种活性可以解释在非常高的卡泊芬净浓度下对矛盾生长的抑制作用。此外,我们发现暴露于抑制性卡泊芬净浓度总是会导致初始生长抑制,而与药物浓度诱导矛盾效应的能力无关。矛盾生长的菌丝从基本上不含β-1,3-葡聚糖的微菌落中出现。然而,这些菌丝再次暴露β-1,3-葡聚糖,表明β-1,3-葡聚糖合成得以恢复。与这一假设一致,我们发现β-1,3-葡聚糖合酶Fks1的表达是矛盾效应的必要条件。令人惊讶的是,fks1的过表达使烟曲霉更易受影响,而表达降低则导致菌丝对卡泊芬净的生长抑制和有限的杀菌活性更具抗性。几丁质合成的上调对矛盾效应似乎不太重要,因为矛盾生长的菌丝比生长受抑制的亲本微菌落显示出明显更少的几丁质。我们的结果支持一种模型,其中矛盾效应主要依赖于β-1,3-葡聚糖合酶活性的恢复。