Suppr超能文献

分层双随机偏好设计的样本量和功效。

Sample size and power for a stratified doubly randomized preference design.

机构信息

Department of Biostatistics, Yale School of Public Health, USA.

出版信息

Stat Methods Med Res. 2018 Jul;27(7):2168-2184. doi: 10.1177/0962280216677573. Epub 2016 Nov 21.

Abstract

The two-stage (or doubly) randomized preference trial design is an important tool for researchers seeking to disentangle the role of patient treatment preference on treatment response through estimation of selection and preference effects. Up until now, these designs have been limited by their assumption of equal preference rates and effect sizes across the entire study population. We propose a stratified two-stage randomized trial design that addresses this limitation. We begin by deriving stratified test statistics for the treatment, preference, and selection effects. Next, we develop a sample size formula for the number of patients required to detect each effect. The properties of the model and the efficiency of the design are established using a series of simulation studies. We demonstrate the applicability of the design using a study of Hepatitis C treatment modality, specialty clinic versus mobile medical clinic. In this example, a stratified preference design (stratified by alcohol/drug use) may more closely capture the true distribution of patient preferences and allow for a more efficient design than a design which ignores these differences (unstratified version).

摘要

两阶段(或双重)随机偏好试验设计是研究人员寻求通过估计选择和偏好效应来解开患者治疗偏好对治疗反应的作用的重要工具。到目前为止,这些设计受到整个研究人群中偏好率和效应大小相等的假设的限制。我们提出了一种分层两阶段随机试验设计来解决这个限制。我们首先推导出针对治疗、偏好和选择效应的分层检验统计量。接下来,我们为检测每个效应所需的患者数量开发了一个样本量公式。通过一系列模拟研究来确定模型的性质和设计的效率。我们使用丙型肝炎治疗方式的研究,专业诊所与移动医疗诊所,来演示设计的适用性。在这个例子中,分层偏好设计(按酒精/药物使用分层)可能更接近地捕捉患者偏好的真实分布,并比忽略这些差异的设计(非分层版本)更有效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验