Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.
Center for Methods in Implementation and Prevention Science, Yale School of Public Health, New Haven, Connecticut, USA.
Stat Med. 2024 Jan 30;43(2):315-341. doi: 10.1002/sim.9962. Epub 2023 Nov 27.
The two-stage preference design (TSPD) enables inference for treatment efficacy while allowing for incorporation of patient preference to treatment. It can provide unbiased estimates for selection and preference effects, where a selection effect occurs when patients who prefer one treatment respond differently than those who prefer another, and a preference effect is the difference in response caused by an interaction between the patient's preference and the actual treatment they receive. One potential barrier to adopting TSPD in practice, however, is the relatively large sample size required to estimate selection and preference effects with sufficient power. To address this concern, we propose a group sequential two-stage preference design (GS-TSPD), which combines TSPD with sequential monitoring for early stopping. In the GS-TSPD, pre-planned sequential monitoring allows investigators to conduct repeated hypothesis tests on accumulated data prior to full enrollment to assess study eligibility for early trial termination without inflating type I error rates. Thus, the procedure allows investigators to terminate the study when there is sufficient evidence of treatment, selection, or preference effects during an interim analysis, thereby reducing the design resource in expectation. To formalize such a procedure, we verify the independent increments assumption for testing the selection and preference effects and apply group sequential stopping boundaries from the approximate sequential density functions. Simulations are then conducted to investigate the operating characteristics of our proposed GS-TSPD compared to the traditional TSPD. We demonstrate the applicability of the design using a study of Hepatitis C treatment modality.
两阶段偏好设计(TSPD)能够在允许纳入患者对治疗的偏好的同时,对治疗效果进行推断。它可以为选择和偏好效应提供无偏估计,其中选择效应是指偏好一种治疗方法的患者与偏好另一种治疗方法的患者的反应不同,而偏好效应是患者偏好与他们实际接受的治疗之间相互作用引起的反应差异。然而,在实践中采用 TSPD 的一个潜在障碍是,为了具有足够的功效来估计选择和偏好效应,需要相对较大的样本量。为了解决这个问题,我们提出了一种分组序贯两阶段偏好设计(GS-TSPD),它将 TSPD 与序贯监测相结合,用于早期停止。在 GS-TSPD 中,预先计划的序贯监测允许研究人员在完全入组之前对累积数据进行重复假设检验,以评估早期试验终止的研究资格,而不会增加 I 型错误率。因此,该程序允许研究人员在中期分析期间有足够的治疗、选择或偏好效应证据时终止研究,从而减少预期的设计资源。为了正式化这样的程序,我们验证了用于测试选择和偏好效应的独立增量假设,并应用近似序贯密度函数的分组序贯停止边界。然后进行模拟,以比较我们提出的 GS-TSPD 与传统 TSPD 的操作特性。我们使用丙型肝炎治疗方式的研究来演示该设计的适用性。