Suppr超能文献

大数据在药物研发以及公共与个人健康照护中的应用。

Use of big data for drug development and for public and personal health and care.

作者信息

Leyens Lada, Reumann Matthias, Malats Nuria, Brand Angela

机构信息

Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT), Maastricht University, Maastricht, the Netherlands.

IBM Research - Zurich Laboratory, Rüschlikon, Switzerland.

出版信息

Genet Epidemiol. 2017 Jan;41(1):51-60. doi: 10.1002/gepi.22012. Epub 2016 Nov 21.

Abstract

The use of data analytics across the entire healthcare value chain, from drug discovery and development through epidemiology to informed clinical decision for patients or policy making for public health, has seen an explosion in the recent years. The increase in quantity and variety of data available together with the improvement of storing capabilities and analytical tools offer numerous possibilities to all stakeholders (manufacturers, regulators, payers, healthcare providers, decision makers, researchers) but most importantly, it has the potential to improve general health outcomes if we learn how to exploit it in the right way. This article looks at the different sources of data and the importance of unstructured data. It goes on to summarize current and potential future uses in drug discovery, development, and monitoring as well as in public and personal healthcare; including examples of good practice and recent developments. Finally, we discuss the main practical and ethical challenges to unravel the full potential of big data in healthcare and conclude that all stakeholders need to work together towards the common goal of making sense of the available data for the common good.

摘要

近年来,从药物发现与开发到流行病学,再到为患者提供明智的临床决策或制定公共卫生政策,数据分析在整个医疗保健价值链中的应用呈爆炸式增长。可用数据在数量和种类上的增加,以及存储能力和分析工具的改进,为所有利益相关者(制造商、监管机构、支付方、医疗保健提供者、决策者、研究人员)提供了众多可能性,但最重要的是,如果我们学会以正确的方式利用它,它有可能改善总体健康结果。本文探讨了不同的数据来源以及非结构化数据的重要性。接着总结了数据在药物发现、开发和监测以及公共和个人医疗保健方面当前和潜在的未来用途;包括良好实践的例子和最新进展。最后,我们讨论了挖掘医疗保健大数据全部潜力所面临的主要实际和伦理挑战,并得出结论,所有利益相关者需要共同努力,朝着为共同利益理解可用数据这一共同目标前进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验