Suppr超能文献

变革医疗服务提供:将动态模拟建模与大数据整合于卫生经济学和结果研究中。

Transforming Healthcare Delivery: Integrating Dynamic Simulation Modelling and Big Data in Health Economics and Outcomes Research.

作者信息

Marshall Deborah A, Burgos-Liz Lina, Pasupathy Kalyan S, Padula William V, IJzerman Maarten J, Wong Peter K, Higashi Mitchell K, Engbers Jordan, Wiebe Samuel, Crown William, Osgood Nathaniel D

机构信息

Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Room 3C56 Health Research Innovation Centre, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.

Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Room 3C58 Health Research Innovation Centre, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.

出版信息

Pharmacoeconomics. 2016 Feb;34(2):115-26. doi: 10.1007/s40273-015-0330-7.

Abstract

In the era of the Information Age and personalized medicine, healthcare delivery systems need to be efficient and patient-centred. The health system must be responsive to individual patient choices and preferences about their care, while considering the system consequences. While dynamic simulation modelling (DSM) and big data share characteristics, they present distinct and complementary value in healthcare. Big data and DSM are synergistic-big data offer support to enhance the application of dynamic models, but DSM also can greatly enhance the value conferred by big data. Big data can inform patient-centred care with its high velocity, volume, and variety (the three Vs) over traditional data analytics; however, big data are not sufficient to extract meaningful insights to inform approaches to improve healthcare delivery. DSM can serve as a natural bridge between the wealth of evidence offered by big data and informed decision making as a means of faster, deeper, more consistent learning from that evidence. We discuss the synergies between big data and DSM, practical considerations and challenges, and how integrating big data and DSM can be useful to decision makers to address complex, systemic health economics and outcomes questions and to transform healthcare delivery.

摘要

在信息时代和个性化医疗的时代,医疗服务提供系统需要高效且以患者为中心。卫生系统必须响应个体患者对其治疗的选择和偏好,同时考虑系统影响。虽然动态模拟建模(DSM)和大数据有共同特点,但它们在医疗保健领域具有独特且互补的价值。大数据和DSM具有协同作用——大数据为增强动态模型的应用提供支持,但DSM也能极大地提升大数据所赋予的价值。与传统数据分析相比,大数据凭借其高速、大量和多样(即“3V”)的特点为以患者为中心的医疗提供信息;然而,仅靠大数据不足以提取有意义的见解来指导改善医疗服务的方法。DSM可以成为大数据提供的丰富证据与明智决策之间的天然桥梁,作为一种从该证据中更快、更深入、更一致地学习的手段。我们讨论了大数据与DSM之间的协同作用、实际考量和挑战,以及整合大数据和DSM如何有助于决策者解决复杂的系统性卫生经济学和结果问题,并转变医疗服务的提供方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验