Suppr超能文献

考虑色觉缺陷优化色图以实现科学数据的准确解读。

Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data.

机构信息

Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

出版信息

PLoS One. 2018 Aug 1;13(7):e0199239. doi: 10.1371/journal.pone.0199239. eCollection 2018.

Abstract

Color vision deficiency (CVD) affects more than 4% of the population and leads to a different visual perception of colors. Though this has been known for decades, colormaps with many colors across the visual spectra are often used to represent data, leading to the potential for misinterpretation or difficulty with interpretation by someone with this deficiency. Until the creation of the module presented here, there were no colormaps mathematically optimized for CVD using modern color appearance models. While there have been some attempts to make aesthetically pleasing or subjectively tolerable colormaps for those with CVD, our goal was to make optimized colormaps for the most accurate perception of scientific data by as many viewers as possible. We developed a Python module, cmaputil, to create CVD-optimized colormaps, which imports colormaps and modifies them to be perceptually uniform in CVD-safe colorspace while linearizing and maximizing the brightness range. The module is made available to the science community to enable others to easily create their own CVD-optimized colormaps. Here, we present an example CVD-optimized colormap created with this module that is optimized for viewing by those without a CVD as well as those with red-green colorblindness. This colormap, cividis, enables nearly-identical visual-data interpretation to both groups, is perceptually uniform in hue and brightness, and increases in brightness linearly.

摘要

色觉缺陷(CVD)影响超过 4%的人口,并导致对颜色的不同视觉感知。尽管这已经为人所知数十年,但许多颜色的色图经常被用于表示数据,这导致了对具有这种缺陷的人可能产生误解或难以解释。直到这里展示的模块创建之前,还没有使用现代颜色外观模型针对 CVD 进行数学优化的色图。虽然有人试图为 CVD 患者制作美观或主观上可接受的色图,但我们的目标是为尽可能多的观众制作最准确感知科学数据的优化色图。我们开发了一个 Python 模块 cmaputil,用于创建 CVD 优化的色图,该模块导入色图并对其进行修改,使其在 CVD 安全色空间中具有感知均匀性,同时线性化并最大化亮度范围。该模块提供给科学界,使其他人能够轻松创建自己的 CVD 优化色图。在这里,我们展示了一个使用此模块创建的 CVD 优化色图示例,该色图针对没有 CVD 的人和红绿色盲的人进行了优化。这种色图,cividis,使两组人对视觉数据的解释几乎相同,在色调和亮度上具有感知均匀性,并且亮度线性增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4646/6070163/c879ecceffc0/pone.0199239.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验