Fortin Jean-Philippe, Labbe Aurélie, Lemire Mathieu, Zanke Brent W, Hudson Thomas J, Fertig Elana J, Greenwood Celia Mt, Hansen Kasper D
Genome Biol. 2014 Dec 3;15(12):503. doi: 10.1186/s13059-014-0503-2.
We propose an extension to quantile normalization that removes unwanted technical variation using control probes. We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets from The Cancer Genome Atlas and a large case-control study, we show that our algorithm outperforms all existing normalization methods with respect to replication of results between experiments, and yields robust results even in the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable control probes are available.
我们提出了一种分位数归一化的扩展方法,该方法使用对照探针去除不必要的技术变异。我们将我们的算法——功能归一化,应用于Illumina 450k甲基化芯片,并解决了在存在全局表观遗传变化(如人类癌症)的情况下对甲基化数据进行归一化的开放性问题。使用来自癌症基因组图谱的数据集和一项大型病例对照研究,我们表明,在实验间结果的重复性方面,我们的算法优于所有现有的归一化方法,并且即使在存在批次效应的情况下也能产生稳健的结果。只要有合适的对照探针,功能归一化可应用于任何微阵列平台。