Graduate School of Engineering, Yokohama National University, Yokohama, 240-8501 Japan.
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA.
Sci Rep. 2016 Nov 23;6:37614. doi: 10.1038/srep37614.
Recent advances of ultrafast spectroscopy allow the capture of an entire ultrafast signal waveform in a single probe shot, which greatly reduces the measurement time and opens the door for the spectroscopy of unrepeatable phenomena. However, most single-shot detection schemes rely on two-dimensional detectors, which limit the repetition rate of the measurement and can hinder real-time visualization and manipulation of signal waveforms. Here, we demonstrate a new method to circumvent these difficulties and to greatly simplify the detection setup by using a long, single-mode optical fiber and a fast photodiode. Initially, a probe pulse is linearly chirped (the optical frequency varies linearly across the pulse in time), and the temporal profile of an ultrafast signal is then encoded in the probe spectrum. The probe pulse and encoded temporal dynamics are further chirped to nanosecond time scales using the dispersion in the optical fiber, thus, slowing down the ultrafast signal to time scales easily recorded with fast detectors and high-bandwidth electronics. We apply this method to three distinct ultrafast experiments: investigating the power dependence of the Kerr signal in LiNbO, observing an irreversible transmission change of a phase change material, and capturing terahertz waveforms.
最近的超快光谱学进展使得能够在单个探头拍摄中捕获整个超快信号波形,这大大减少了测量时间,并为不可重复现象的光谱学打开了大门。然而,大多数单次检测方案依赖于二维探测器,这限制了测量的重复率,并可能阻碍信号波形的实时可视化和操作。在这里,我们展示了一种新方法,可以通过使用长单模光纤和快速光电二极管来规避这些困难,并大大简化检测设置。最初,探头脉冲被线性啁啾(光频在时间上沿脉冲线性变化),然后超快信号的时域分布被编码在探头光谱中。探头脉冲和编码的时域动态进一步通过光纤中的色散被啁啾到纳秒时间尺度,从而将超快信号减慢到可以用快速探测器和高带宽电子设备记录的时间尺度。我们将这种方法应用于三个不同的超快实验:研究 LiNbO 中克尔信号的功率依赖性,观察相变材料的不可逆传输变化,以及捕获太赫兹波形。