Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain.
Nat Mater. 2015 Oct;14(10):991-5. doi: 10.1038/nmat4359. Epub 2015 Jul 27.
The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.
相变材料中晶态和非晶态之间的极端电光对比度通常被用于光学数据存储,未来的应用包括通用存储器、柔性显示器、可重构光电路和逻辑器件。人们认为光学对比度是由于结晶度的变化而产生的。在这里,我们展示了可以打破光学性质和结构之间的联系。我们使用单次飞秒电子衍射和光谱学的组合,在非晶-晶相转变过程中,同时跟踪相变材料 Ge2Sb2Te5 的晶格动力学和介电函数。由于共振键合态的电子迅速耗尽,介电函数在 100fs 内变化了 30%。这一过程不会改变晶格的结晶度,晶格会以 2ps 的时间常数升温。光学变化比硅大一个数量级,为在不改变结构的情况下在超快时间尺度上控制光提供了新途径。