Suppr超能文献

血液中二氧化碳运输的机理物理化学模型。

A mechanistic physicochemical model of carbon dioxide transport in blood.

作者信息

O'Neill David P, Robbins Peter A

机构信息

Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.

Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom

出版信息

J Appl Physiol (1985). 2017 Feb 1;122(2):283-295. doi: 10.1152/japplphysiol.00318.2016. Epub 2016 Nov 23.

Abstract

UNLABELLED

A number of mathematical models have been produced that, given the Pco and Po of blood, will calculate the total concentrations for CO and O in blood. However, all these models contain at least some empirical features, and thus do not represent all of the underlying physicochemical processes in an entirely mechanistic manner. The aim of this study was to develop a physicochemical model of CO carriage by the blood to determine whether our understanding of the physical chemistry of the major chemical components of blood together with their interactions is sufficiently strong to predict the physiological properties of CO carriage by whole blood. Standard values are used for the ionic composition of the blood, the plasma albumin concentration, and the hemoglobin concentration. All K values required for the model are taken from the literature. The distribution of bicarbonate, chloride, and H ions across the red blood cell membrane follows that of a Gibbs-Donnan equilibrium. The system of equations that results is solved numerically using constraints for mass balance and electroneutrality. The model reproduces the phenomena associated with CO carriage, including the magnitude of the Haldane effect, very well. The structural nature of the model allows various hypothetical scenarios to be explored. Here we examine the effects of 1) removing the ability of hemoglobin to form carbamino compounds; 2) allowing a degree of Cl binding to deoxygenated hemoglobin; and 3) removing the chloride (Hamburger) shift. The insights gained could not have been obtained from empirical models.

NEW & NOTEWORTHY: This study is the first to incorporate a mechanistic model of chloride-bicarbonate exchange between the erythrocyte and plasma into a full physicochemical model of the carriage of carbon dioxide in blood. The mechanistic nature of the model allowed a theoretical study of the quantitative significance for carbon dioxide transport of carbamino compound formation; the putative binding of chloride to deoxygenated hemoglobin, and the chloride (Hamburger) shift.

摘要

未标注

已经产生了许多数学模型,这些模型在给定血液的Pco和Po的情况下,能够计算出血液中CO和O的总浓度。然而,所有这些模型都至少包含一些经验性特征,因此并不能以完全机械的方式代表所有潜在的物理化学过程。本研究的目的是建立一个血液携带CO的物理化学模型,以确定我们对血液主要化学成分的物理化学及其相互作用的理解是否足够深入,从而能够预测全血携带CO的生理特性。血液的离子组成、血浆白蛋白浓度和血红蛋白浓度采用标准值。模型所需的所有K值均取自文献。红细胞膜两侧碳酸氢盐、氯离子和H离子的分布遵循吉布斯-唐南平衡。所得方程组通过质量平衡和电中性约束进行数值求解。该模型很好地再现了与CO携带相关的现象,包括哈代效应的大小。模型的结构性质允许探索各种假设情景。在这里,我们研究了以下几种情况的影响:1)去除血红蛋白形成氨基甲酰化合物的能力;2)允许一定程度的Cl与脱氧血红蛋白结合;3)去除氯离子(汉堡)转移。从经验模型中无法获得这些见解。

新内容与值得注意之处

本研究首次将红细胞与血浆之间氯离子-碳酸氢根交换的机械模型纳入血液中二氧化碳运输的完整物理化学模型。该模型的机械性质使得能够对氨基甲酰化合物形成对二氧化碳运输的定量意义、氯离子与脱氧血红蛋白的假定结合以及氯离子(汉堡)转移进行理论研究。

相似文献

1
A mechanistic physicochemical model of carbon dioxide transport in blood.
J Appl Physiol (1985). 2017 Feb 1;122(2):283-295. doi: 10.1152/japplphysiol.00318.2016. Epub 2016 Nov 23.
2
A theoretical model for gas transport and acid/base regulation by blood flowing in microvessels.
Microvasc Res. 1994 Nov;48(3):364-88. doi: 10.1006/mvre.1994.1062.
3
Carbamino compounds of haemoglobin in human adult and foetal blood.
J Physiol. 1972 Dec;227(2):457-71. doi: 10.1113/jphysiol.1972.sp010042.
4
Bicarbonate binding to hemoglobin links oxygen and carbon dioxide transport in hagfish.
Respir Physiol. 1999 May 3;115(3):309-15. doi: 10.1016/s0034-5687(98)00102-9.
6
Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion.
Ann Biomed Eng. 2006 Jul;34(7):1129-48. doi: 10.1007/s10439-005-9066-4. Epub 2006 May 30.
7
Effects of oxygen saturation on the CO2 transport properties of Lampetra red cells.
Respir Physiol. 1992 Feb;87(2):219-30. doi: 10.1016/0034-5687(92)90061-z.
8
Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites.
Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):383-99. doi: 10.1098/rstb.1982.0139.
10
CO2 transport in agnathan blood: evidence of erythrocyte Cl-/HCO3- exchange limitations.
Respir Physiol. 1990 May-Jun;80(2-3):335-47. doi: 10.1016/0034-5687(90)90093-e.

引用本文的文献

1
Computed cardiopulmonography and the idealized lung clearance index, iLCI, in early-stage cystic fibrosis.
J Appl Physiol (1985). 2023 Jul 1;135(1):205-216. doi: 10.1152/japplphysiol.00744.2022. Epub 2023 Jun 1.
2
Integral assessment of gas exchange during veno-arterial ECMO: accuracy and precision of a modified Fick principle in a porcine model.
Am J Physiol Lung Cell Mol Physiol. 2023 Feb 1;324(2):L102-L113. doi: 10.1152/ajplung.00045.2022. Epub 2022 Dec 13.
3
Altered lung physiology in two cohorts after COVID-19 infection as assessed by computed cardiopulmonography.
J Appl Physiol (1985). 2022 Nov 1;133(5):1175-1191. doi: 10.1152/japplphysiol.00436.2022. Epub 2022 Sep 29.
4
Identifying putative ventilation-perfusion distributions in COVID-19 pneumonia.
PLoS One. 2022 Aug 30;17(8):e0273214. doi: 10.1371/journal.pone.0273214. eCollection 2022.
6
The differing physiology of nitrogen and tracer gas multiple-breath washout techniques.
ERJ Open Res. 2021 Apr 19;7(2). doi: 10.1183/23120541.00858-2020. eCollection 2021 Apr.
7
A dynamic model of the body gas stores for carbon dioxide, oxygen, and inert gases that incorporates circulatory transport delays to and from the lung.
J Appl Physiol (1985). 2021 May 1;130(5):1383-1397. doi: 10.1152/japplphysiol.00764.2020. Epub 2021 Jan 21.
8
A quantitative method for estimating the adaptedness in a physiological study.
Theor Biol Med Model. 2019 Sep 3;16(1):15. doi: 10.1186/s12976-019-0111-7.
9
Laser spectroscopy for breath analysis: towards clinical implementation.
Appl Phys B. 2018;124(8):161. doi: 10.1007/s00340-018-7030-x. Epub 2018 Jul 28.
10
Acid-base balance during muscular exercise: response to Dr. Böning and Dr. Maassen.
Eur J Appl Physiol. 2018 Apr;118(4):865-866. doi: 10.1007/s00421-018-3825-z. Epub 2018 Feb 22.

本文引用的文献

2
Integration of acid-base and electrolyte disorders.
N Engl J Med. 2015 Jan 22;372(4):389. doi: 10.1056/NEJMc1414731.
3
Integration of acid-base and electrolyte disorders.
N Engl J Med. 2015 Jan 22;372(4):389. doi: 10.1056/NEJMc1414731.
4
Integration of acid-base and electrolyte disorders.
N Engl J Med. 2015 Jan 22;372(4):391-2. doi: 10.1056/NEJMc1414731.
5
Integration of acid-base and electrolyte disorders.
N Engl J Med. 2014 Nov 6;371(19):1821-31. doi: 10.1056/NEJMra1215672.
6
Whole body acid-base and fluid-electrolyte balance: a mathematical model.
Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1118-31. doi: 10.1152/ajprenal.00195.2013. Epub 2013 Jul 24.
7
A mathematical model of blood-interstitial acid-base balance: application to dilution acidosis and acid-base status.
J Appl Physiol (1985). 2011 Apr;110(4):988-1002. doi: 10.1152/japplphysiol.00514.2010. Epub 2011 Jan 6.
10
An improved clinical method for the estimation of disturbances of the acid-base balance of human blood.
Medicine (Baltimore). 1948 May;27(2):223-242. doi: 10.1097/00005792-194805000-00003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验