Suppr超能文献

使用电子舌分析中药味道的协议的优化与验证

Optimization and validation of the protocol used to analyze the taste of traditional Chinese medicines using an electronic tongue.

作者信息

Li Xuelin, Gao Xiaojie, Liu Ruixin, Wang Junming, Wu Zidan, Zhang Lu, Li Huiling, Gui Xinjing, Kang Bingya, Shi Junhan

机构信息

Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China.

School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450008, P.R. China.

出版信息

Exp Ther Med. 2016 Nov;12(5):2949-2957. doi: 10.3892/etm.2016.3733. Epub 2016 Sep 20.

Abstract

Tools to define the active ingredients and flavors of Traditional Chinese Medicines (TCMs) are limited by long analysis times, complex sample preparation and a lack of multiplexed analysis. The aim of the present study was to optimize and validate an electronic tongue (E-tongue) methodology to analyze the bitterness of TCMs. To test the protocol, 35 different TCM concoctions were measured using an E-tongue, and seven replicate measurements of each sample were taken to evaluate reproducibility and precision. E-tongue sensor information was identified and classified using analysis approaches including least squares support vector machine (LS-SVM), support vector machine (SVM), discriminant analysis (DA) and partial least squares (PLS). A benefit of this analytical protocol was that the analysis of a single sample took <15 min for all seven sensors. The results identified that the LS-SVM approach provided the best bitterness classification accuracy (binary classification accuracy, 100%; ternary classification accuracy, 89.66%). The E-tongue protocol developed showed good reproducibility and high precision within a 6 h measurement cycle. To the best of our knowledge, this is the first study of an E-tongue being applied to assay the bitterness of TCMs. This approach could be applied in the classification of the taste of TCMs, and serve important roles in other fields, including foods and beverages.

摘要

用于确定中药有效成分和风味的工具受到分析时间长、样品制备复杂以及缺乏多重分析的限制。本研究的目的是优化和验证一种电子舌方法来分析中药的苦味。为了测试该方案,使用电子舌对35种不同的中药配方进行了测量,并对每个样品进行了7次重复测量,以评估重现性和精密度。使用包括最小二乘支持向量机(LS-SVM)、支持向量机(SVM)、判别分析(DA)和偏最小二乘法(PLS)在内的分析方法对电子舌传感器信息进行识别和分类。该分析方案的一个优点是,对所有七个传感器而言,单个样品的分析时间不到15分钟。结果表明,LS-SVM方法提供了最佳的苦味分类准确率(二元分类准确率为100%;三元分类准确率为89.66%)。所开发的电子舌方案在6小时的测量周期内显示出良好的重现性和高精度。据我们所知,这是第一项将电子舌应用于测定中药苦味的研究。这种方法可应用于中药味道的分类,并在包括食品和饮料在内的其他领域发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c006/5103729/0be69e7423d3/etm-12-05-2949-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验