Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
Nat Commun. 2016 Nov 24;7:13496. doi: 10.1038/ncomms13496.
Insulin secretion from pancreatic β-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including β-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in β-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores β-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered β-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in diabetes.
胰岛β细胞的胰岛素分泌在所有类型的糖尿病中均受损。由此导致的高血糖对包括β细胞在内的许多组织均具有有害影响。在这里,我们发现慢性高血糖会损害胰腺胰岛中的葡萄糖代谢并改变代谢基因的表达。在人类新生儿糖尿病的小鼠模型中,高血糖导致明显的糖原积累,并增加β细胞的细胞凋亡。磺酰脲类药物治疗可迅速使血糖水平正常化,消耗糖原储存,增加自噬并恢复β细胞代谢。胰岛素治疗具有相同的作用,但作用较慢。在表达激活的葡萄糖激酶突变的小鼠、高血糖的体外模型以及 2 型糖尿病患者的胰岛中均观察到类似的变化。β细胞代谢的改变可能是糖尿病中胰岛素分泌逐渐受损和β细胞质量减少的基础。