Mir-Coll Joan, Duran Jordi, Slebe Felipe, García-Rocha Mar, Gomis Ramon, Gasa Rosa, Guinovart Joan J
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain.
Diabetologia. 2016 May;59(5):1012-20. doi: 10.1007/s00125-016-3871-1. Epub 2016 Jan 29.
AIMS/HYPOTHESIS: Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells.
Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays.
Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model.
CONCLUSIONS/INTERPRETATION: Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.
目的/假设:糖尿病患者的β细胞中会出现糖原积累,并且有人提出糖原积累部分介导了糖毒性诱导的β细胞功能障碍。然而,糖原代谢在β细胞功能中的作用及其对糖尿病病理生理学的贡献仍知之甚少。我们通过研究以下两种小鼠的葡萄糖稳态来探究β细胞糖原的功能:(1)胰腺中糖原合成缺陷;(2)β细胞中糖原过度积累。
使用胰腺特异性Cre系,通过Cre-lox重组实现Gys1基因的条件性缺失和靶向糖原的蛋白(PTG)的过表达。通过测定空腹血糖、胰岛素血症和葡萄糖耐量来评估葡萄糖稳态。通过形态学测定β细胞质量。用高碘酸-希夫试剂染色在组织学上检测糖原。分离的胰岛用于测定糖原和胰岛素含量、胰岛素分泌、免疫印迹和基因表达分析。
与对照组相比,Gys1基因敲除(Gys1(KO))小鼠在葡萄糖耐量、基础血糖和胰岛素血症方面没有差异。Gys1(KO)小鼠和对照组分离胰岛中的胰岛素分泌和基因表达也没有区别。相反,尽管胰岛中糖原有效过度积累,但PTG过表达(PTG(OE))小鼠的葡萄糖耐量与对照组相似。然而,在禁食条件下,它们的血糖较低,胰岛素血症较高。重要的是,年轻和老年的PTG(OE)小鼠与年龄匹配的对照组相比,β细胞质量均无差异。最后,高脂饮食在两种模型中均未显示出β细胞自主表型。
结论/解读:维持β细胞功能不需要糖原代谢。仅β细胞中的糖原积累不足以引发这些细胞的功能障碍或丧失,也不足以导致糖尿病进展。