Stoffel Wilhelm, Hammels Ina, Jenke Bitta, Binczek Erika, Schmidt-Soltau Inga, Brodesser Susanne, Schauss Astrid, Etich Julia, Heilig Juliane, Zaucke Frank
Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany.
Cluster of Excellence, Cellular Stress Response in Aging-Related Diseases (CECAD), University of Cologne, Cologne, Germany.
Cell Death Dis. 2016 Nov 24;7(11):e2488. doi: 10.1038/cddis.2016.385.
Systemic loss of neutral sphingomyelinase (SMPD3) in mice leads to a novel form of systemic, juvenile hypoplasia (dwarfism). SMPD3 deficiency in mainly two growth regulating cell types contributes to the phenotype, in chondrocytes of skeletal growth zones to skeletal malformation and chondrodysplasia, and in hypothalamic neurosecretory neurons to systemic hypothalamus-pituitary-somatotropic hypoplasia. The unbiased smpd3-/- mouse mutant and derived smpd3-/- primary chondrocytes were instrumental in defining the enigmatic role underlying the systemic and cell autonomous role of SMPD3 in the Golgi compartment. Here we describe the unprecedented role of SMPD3. SMPD3 deficiency disrupts homeostasis of sphingomyelin (SM), ceramide (Cer) and diacylglycerol (DAG) in the Golgi SMPD3-SMS1 (SM-synthase1) cycle. Cer and DAG, two fusogenic intermediates, modify the membrane lipid bilayer for the initiation of vesicle formation and transport. Dysproteostasis, unfolded protein response, endoplasmic reticulum stress and apoptosis perturb the Golgi secretory pathway in the smpd3-/- mouse. Secretion of extracellular matrix proteins is arrested in chondrocytes and causes skeletal malformation and chondrodysplasia. Similarly, retarded secretion of proteo-hormones in hypothalamic neurosecretory neurons leads to hypothalamus induced combined pituitary hormone deficiency. SMPD3 in the regulation of the protein vesicular secretory pathway may become a diagnostic target in the etiology of unknown forms of juvenile growth and developmental inhibition.
小鼠中性鞘磷脂酶(SMPD3)的全身缺失会导致一种新型的全身性幼年发育不全(侏儒症)。主要在两种生长调节细胞类型中缺乏SMPD3会导致这种表型,在骨骼生长区的软骨细胞中会导致骨骼畸形和软骨发育不良,而在下丘脑神经分泌神经元中则会导致全身性下丘脑 - 垂体 - 生长激素发育不全。无偏差的smpd3 - / - 小鼠突变体和衍生的smpd3 - / - 原代软骨细胞有助于确定SMPD3在高尔基体区室中的全身和细胞自主作用背后的神秘作用。在这里,我们描述了SMPD3前所未有的作用。SMPD3缺乏会破坏高尔基体SMPD3 - SMS1(鞘磷脂合成酶1)循环中鞘磷脂(SM)、神经酰胺(Cer)和二酰甘油(DAG)的稳态。Cer和DAG这两种促融合中间体修饰膜脂双层以启动囊泡形成和运输。蛋白质稳态失调、未折叠蛋白反应、内质网应激和细胞凋亡扰乱了smpd3 - / - 小鼠的高尔基体分泌途径。细胞外基质蛋白的分泌在软骨细胞中受阻,导致骨骼畸形和软骨发育不良。同样,下丘脑神经分泌神经元中蛋白激素的分泌延迟导致下丘脑诱导的联合垂体激素缺乏。SMPD3在调节蛋白质囊泡分泌途径方面可能成为不明形式的幼年生长和发育抑制病因学中的诊断靶点。