Suppr超能文献

四维流磁共振成像的空间分辨率和速度场改善。

Spatial resolution and velocity field improvement of 4D-flow MRI.

机构信息

Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.

Sydney Medical School, University of Sydney, Camperdown, Australia.

出版信息

Magn Reson Med. 2017 Nov;78(5):1959-1968. doi: 10.1002/mrm.26557. Epub 2016 Nov 24.

Abstract

PURPOSE

4D-flow MRI obtains a time-dependent 3D velocity field; however, its use for the calculation of higher-order parameters is limited by noise. We present an algorithm for denoising 4D-flow data.

THEORY AND METHODS

By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD.

RESULTS

The VFIT algorithm achieved a >100% noise reduction of a corrupted analytical dataset. In addition, 4D-flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (<2% difference in flow measurements).

CONCLUSION

This study presents a method for denoising 4D-flow datasets with improved spatial resolution. Bulk flow dynamics are accurately conserved while velocity and velocity gradient fields are improved; this is important in the calculation of higher-order parameters such as WSS, which are shown to be more comparable to CFD measures. Magn Reson Med 78:1959-1968, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

4D-flow MRI 可获取时变的 3D 速度场;但因其易受噪声干扰,其在高阶参数计算方面的应用受到限制。我们提出了一种 4D-flow 数据去噪算法。

理论与方法

通过整合速度场并消除高曲率处描绘的噪声流中的流线,可以提取去噪数据集。该方法被定义为速度场改进(VFIT)算法,通过分析数据集和与计算流体动力学(CFD)模拟进行的体内数据验证。作为原理验证,比较了降主动脉壁切应力(WSS)的测量值与 CFD 定义的测量值。

结果

VFIT 算法可实现受污染分析数据集的 >100%噪声降低。此外,4D-flow 数据得到了清理,空间分辨率和近壁速度表示得到了改善。WSS 测量值与 CFD 数据吻合较好,保留了主流动力学(<2%的流量测量差异)。

结论

本研究提出了一种可提高空间分辨率的 4D-flow 数据集去噪方法。在改进速度和速度梯度场的同时,还能准确保留主流动力学;这对于计算 WSS 等高阶参数很重要,因为 WSS 与 CFD 测量值更具可比性。磁共振医学 78:1959-1968,2017。©2016 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验