Suppr超能文献

基于隐式神经表示的 4D 流 MRI 无监督超分辨率和去噪。

Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI.

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Department of Applied Mathematics, University of Twente, 7500AE Enschede, the Netherlands.

出版信息

Comput Methods Programs Biomed. 2024 Apr;246:108057. doi: 10.1016/j.cmpb.2024.108057. Epub 2024 Feb 7.

Abstract

BACKGROUND AND OBJECTIVE

4D flow magnetic resonance imaging provides time-resolved blood flow velocity measurements, but suffers from limitations in spatio-temporal resolution and noise. In this study, we investigated the use of sinusoidal representation networks (SIRENs) to improve denoising and super-resolution of velocity fields measured by 4D flow MRI in the thoracic aorta.

METHODS

Efficient training of SIRENs in 4D was achieved by sampling voxel coordinates and enforcing the no-slip condition at the vessel wall. A set of synthetic measurements were generated from computational fluid dynamics simulations, reproducing different noise levels. The influence of SIREN architecture was systematically investigated, and the performance of our method was compared to existing approaches for 4D flow denoising and super-resolution.

RESULTS

Compared to existing techniques, a SIREN with 300 neurons per layer and 20 layers achieved lower errors (up to 50% lower vector normalized root mean square error, 42% lower magnitude normalized root mean square error, and 15% lower direction error) in velocity and wall shear stress fields. Applied to real 4D flow velocity measurements in a patient-specific aortic aneurysm, our method produced denoised and super-resolved velocity fields while maintaining accurate macroscopic flow measurements.

CONCLUSIONS

This study demonstrates the feasibility of using SIRENs for complex blood flow velocity representation from clinical 4D flow, with quick execution and straightforward implementation.

摘要

背景与目的

4D 流动磁共振成像可提供时变血流速度测量,但存在时空分辨率和噪声限制。本研究旨在探讨正弦表示网络(SIRENs)在改善胸主动脉 4D 流动 MRI 测量的速度场去噪和超分辨率方面的应用。

方法

通过对血管壁处的速度分量进行采样并施加无滑移条件,实现了 SIRENs 在 4D 中的高效训练。从计算流体动力学模拟生成了一组具有不同噪声水平的合成测量数据。系统研究了 SIREN 结构的影响,并将我们的方法与现有的 4D 流动去噪和超分辨率方法进行了比较。

结果

与现有技术相比,具有 300 个神经元/层和 20 层的 SIREN 在速度和壁面切应力场中具有更低的误差(矢量归一化均方根误差降低高达 50%,幅度归一化均方根误差降低 42%,方向误差降低 15%)。应用于特定患者的主动脉瘤的真实 4D 流动速度测量,我们的方法在保持准确的宏观流动测量的同时,生成了去噪和超分辨率的速度场。

结论

本研究证明了 SIRENs 用于从临床 4D 流动中表示复杂血流速度的可行性,具有快速执行和简单实现的特点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验