Shit Suprosanna, Zimmermann Judith, Ezhov Ivan, Paetzold Johannes C, Sanches Augusto F, Pirkl Carolin, Menze Bjoern H
Department of Informatics, Technical University of Munich, Munich, Germany.
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
Front Artif Intell. 2022 Aug 12;5:928181. doi: 10.3389/frai.2022.928181. eCollection 2022.
Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve 4D-flow MRI data at a post-processing level. We propose a deep convolutional neural network (CNN) that learns the inter-scale relationship of the velocity vector map and leverages an efficient residual learning scheme to make it computationally feasible. A novel, direction-sensitive, and robust loss function is crucial to learning vector-field data. We present a detailed comparative study between the proposed super-resolution and the conventional cubic B-spline based vector-field super-resolution. Our method improves the peak-velocity to noise ratio of the flow field by 10 and 30% for cardiovascular and cerebrovascular data, respectively, for 4 × super-resolution over the state-of-the-art cubic B-spline. Significantly, our method offers 10x faster inference over the cubic B-spline. The proposed approach for super-resolution of 4D-flow data would potentially improve the subsequent calculation of hemodynamic quantities.
利用四维流磁共振成像(MRI)数据来量化血流动力学需要在低噪声水平下具备足够的时空矢量场分辨率。为应对这一挑战,我们提供了一种在后期处理层面超分辨四维流MRI数据的深度学习解决方案。我们提出了一种深度卷积神经网络(CNN),它能学习速度矢量图的尺度间关系,并利用高效的残差学习方案使其在计算上可行。一种新颖、方向敏感且鲁棒的损失函数对于学习矢量场数据至关重要。我们对所提出的超分辨率方法与传统的基于三次B样条的矢量场超分辨率方法进行了详细的对比研究。对于心血管和脑血管数据,我们的方法在进行4倍超分辨率时,相较于最先进的三次B样条方法,分别将流场的峰值速度与噪声比提高了10%和30%。值得注意的是,我们的方法推理速度比三次B样条方法快10倍。所提出的四维流数据超分辨率方法可能会改善后续血流动力学量的计算。