Suppr超能文献

多年生黑麦草(Lolium perenne L.)的荧光染色体显带和荧光原位杂交图谱分析

Fluorescence chromosome banding and FISH mapping in perennial ryegrass, Lolium perenne L.

作者信息

Ansari Helal A, Ellison Nicholas W, Bassett Shalome A, Hussain Syed W, Bryan Gregory T, Williams Warren M

机构信息

AgResearch Ltd, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.

, Present address: 16 Moerangi St., Palmerston North, 4410, New Zealand.

出版信息

BMC Genomics. 2016 Nov 25;17(1):977. doi: 10.1186/s12864-016-3231-z.

Abstract

BACKGROUND

The unambiguous identification of individual chromosomes is a key part of the genomic characterization of any species. In this respect, the development and application of chromosome banding techniques has revolutionised mammalian and especially, human genomics. However, partly because of the traditional use of chromosome squash preparations, consistent fluorescence banding has rarely been achieved in plants. Here, successful fluorescence chromosome banding has been achieved for the first time in perennial ryegrass (Lolium perenne), a forage and turf grass with a large genome and a symmetrical karyotype with chromosomes that are difficult to distinguish.

RESULTS

Based on flame-dried chromosome preparations instead of squashes, a simple fluorescence Q-banding technique using quinacrine mustard, unambiguously identified each chromosome and enabled the development of a banded karyotype and ideogram of the species. This Q-banding technique was also shown to be compatible with sequential FISH mapping enabling labelled genes and molecular markers to be precisely assigned to specific cytogenetic bands. A technique for DAPI-banding, which gave a similar pattern to Q-banding, was also introduced. This was compatible with FISH mapping and was used to anchor a single copy gene from an earlier mapped linkage group of L. perenne, thus providing a step towards integration of the genetic and cytogenetic maps.

CONCLUSIONS

By enabling the allocation of genes mapped by other methods to physically identified chromosome positions, this work will contribute to a better understanding of genomic structures and functions in grasses.

摘要

背景

明确识别单个染色体是任何物种基因组特征描述的关键部分。在这方面,染色体显带技术的发展和应用彻底改变了哺乳动物尤其是人类基因组学。然而,部分由于传统上使用染色体压片制备方法,在植物中很少能实现一致的荧光显带。在此,多年生黑麦草(Lolium perenne)首次成功实现了荧光染色体显带,多年生黑麦草是一种具有大基因组和对称核型且染色体难以区分的饲草和草坪草。

结果

基于火焰干燥的染色体制备而非压片,使用喹吖因芥子的简单荧光Q显带技术明确识别了每条染色体,并能够构建该物种的带型核型图和 ideogram。这种Q显带技术还被证明与连续荧光原位杂交定位兼容,使得标记基因和分子标记能够精确地定位到特定的细胞遗传带。还介绍了一种DAPI显带技术,其产生的模式与Q显带相似。它与荧光原位杂交定位兼容,并用于定位来自多年生黑麦草早期定位连锁群的一个单拷贝基因,从而朝着整合遗传图谱和细胞遗传图谱迈出了一步。

结论

通过能够将其他方法定位的基因分配到物理鉴定的染色体位置,这项工作将有助于更好地理解禾本科植物的基因组结构和功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e29a/5124321/376be7d5b51a/12864_2016_3231_Fig1_HTML.jpg

相似文献

1
Fluorescence chromosome banding and FISH mapping in perennial ryegrass, Lolium perenne L.
BMC Genomics. 2016 Nov 25;17(1):977. doi: 10.1186/s12864-016-3231-z.
2
Genetic linkage mapping of an annual x perennial ryegrass population.
Theor Appl Genet. 2004 Jul;109(2):294-304. doi: 10.1007/s00122-004-1647-3. Epub 2004 Apr 7.
4
The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.
Plant Physiol. 2013 Feb;161(2):571-82. doi: 10.1104/pp.112.207282. Epub 2012 Nov 26.
5
7
Karyotype reshufflings of Festuca pratensis × Lolium perenne hybrids.
Protoplasma. 2018 Mar;255(2):451-458. doi: 10.1007/s00709-017-1161-5. Epub 2017 Sep 7.
10
A transcriptome map of perennial ryegrass (Lolium perenne L.).
BMC Genomics. 2012 Apr 18;13:140. doi: 10.1186/1471-2164-13-140.

引用本文的文献

1
Plant Tolerance to Drought Stress with Emphasis on Wheat.
Plants (Basel). 2023 May 30;12(11):2170. doi: 10.3390/plants12112170.
2
Distribution patterns of rDNA loci in the - complex (Poaceae).
Comp Cytogenet. 2022 Mar 24;16(1):39-54. doi: 10.3897/compcytogen.v16.i1.79056. eCollection 2022.
3
Polyploidy on islands - concerted evolution and gene loss amid chromosomal stasis.
Ann Bot. 2023 Feb 7;131(1):33-44. doi: 10.1093/aob/mcac051.
4
Asynapsis and unreduced gamete formation in a Trifolium interspecific hybrid.
BMC Plant Biol. 2022 Jan 3;22(1):14. doi: 10.1186/s12870-021-03403-w.

本文引用的文献

1
A synteny-based draft genome sequence of the forage grass Lolium perenne.
Plant J. 2015 Nov;84(4):816-26. doi: 10.1111/tpj.13037.
3
Functional repetitive sequences and fragile sites in chromosomes of Lolium perenne L.
Protoplasma. 2015 Mar;252(2):451-60. doi: 10.1007/s00709-014-0690-4. Epub 2014 Aug 21.
4
Why plant chromosomes do not show G-bands.
Theor Appl Genet. 1977 May;50(3):121-4. doi: 10.1007/BF00276805.
5
Emerging technologies advancing forage and turf grass genomics.
Biotechnol Adv. 2014 Jan-Feb;32(1):190-9. doi: 10.1016/j.biotechadv.2013.11.010. Epub 2013 Dec 2.
6
Flow sorting and sequencing meadow fescue chromosome 4F.
Plant Physiol. 2013 Nov;163(3):1323-37. doi: 10.1104/pp.113.224105. Epub 2013 Oct 4.
7
Next-generation survey sequencing and the molecular organization of wheat chromosome 6B.
DNA Res. 2014;21(2):103-14. doi: 10.1093/dnares/dst041. Epub 2013 Oct 1.
9
Exploitation of interspecific diversity for monocot crop improvement.
Heredity (Edinb). 2013 May;110(5):475-83. doi: 10.1038/hdy.2012.116. Epub 2013 Jan 16.
10
Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones.
G3 (Bethesda). 2013 Jan;3(1):31-40. doi: 10.1534/g3.112.004846. Epub 2013 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验