Suppr超能文献

γ-氨基丁酸(GABA)信号传导的动力学:来自视交叉上核生物钟起搏器的启示。

The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.

作者信息

Albers H Elliott, Walton James C, Gamble Karen L, McNeill John K, Hummer Daniel L

机构信息

Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.

Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.

出版信息

Front Neuroendocrinol. 2017 Jan;44:35-82. doi: 10.1016/j.yfrne.2016.11.003. Epub 2016 Nov 25.

Abstract

Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABA receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.

摘要

几乎视交叉上核(SCN)内的每一个神经元都通过GABA能信号进行通信。SCN内GABA的细胞外水平由合成与转运以及突触和非突触释放的复杂相互作用决定。对GABA的反应由GABA受体介导,这些受体对阶段性和持续性GABA释放均有反应,并且能够产生兴奋性以及抑制性细胞反应。GABA还通过GABA受体的排他性抑制作用影响昼夜节律控制。GABA和神经肽信号传导均发生在SCN内,尽管这些信号相互作用的功能后果尚未得到充分了解。本综述探讨了GABA在昼夜节律起搏器中的作用、在昼夜节律产生机制中的作用、在非光刺激重置起搏器相位能力中的作用以及昼夜循环调节起搏器能力中的作用。

相似文献

1
The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.
Front Neuroendocrinol. 2017 Jan;44:35-82. doi: 10.1016/j.yfrne.2016.11.003. Epub 2016 Nov 25.
2
Functional Significance of the Excitatory Effects of GABA in the Suprachiasmatic Nucleus.
J Biol Rhythms. 2018 Aug;33(4):376-387. doi: 10.1177/0748730418782820. Epub 2018 Jul 5.
4
GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice.
Commun Biol. 2019 Jun 21;2:232. doi: 10.1038/s42003-019-0483-6. eCollection 2019.
5
6
Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus.
J Physiol Sci. 2018 Jul;68(4):333-343. doi: 10.1007/s12576-018-0604-x. Epub 2018 Mar 20.
8
GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm.
J Neurochem. 2021 Apr;157(1):31-41. doi: 10.1111/jnc.15012. Epub 2020 Jul 3.
10
Novel phase-shifting effects of GABAA receptor activation in the suprachiasmatic nucleus of a diurnal rodent.
Am J Physiol Regul Integr Comp Physiol. 2004 May;286(5):R820-5. doi: 10.1152/ajpregu.00575.2003. Epub 2003 Dec 4.

引用本文的文献

3
Regional response to light illuminance across the human hypothalamus.
Elife. 2024 Oct 28;13:RP96576. doi: 10.7554/eLife.96576.
4
Fly into tranquility: GABA's role in Drosophila sleep.
Curr Opin Insect Sci. 2024 Aug;64:101219. doi: 10.1016/j.cois.2024.101219. Epub 2024 Jun 5.
5
Kalium channelrhodopsins effectively inhibit neurons.
Nat Commun. 2024 Apr 24;15(1):3480. doi: 10.1038/s41467-024-47203-w.
6
Circadian rhythm disruption and retinal dysfunction: a bidirectional link in Alzheimer's disease?
Neural Regen Res. 2024 Sep 1;19(9):1967-1972. doi: 10.4103/1673-5374.390962. Epub 2023 Dec 15.
7
Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2301330120. doi: 10.1073/pnas.2301330120. Epub 2023 May 15.
8
Disturbed circadian rhythm and retinal degeneration in a mouse model of Alzheimer's disease.
Acta Neuropathol Commun. 2023 Mar 31;11(1):55. doi: 10.1186/s40478-023-01529-6.
9
Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock.
iScience. 2023 Jan 18;26(2):106002. doi: 10.1016/j.isci.2023.106002. eCollection 2023 Feb 17.

本文引用的文献

1
Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.
Curr Biol. 2016 Jul 25;26(14):1880-6. doi: 10.1016/j.cub.2016.05.018. Epub 2016 Jun 30.
2
Architecture of retinal projections to the central circadian pacemaker.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):6047-52. doi: 10.1073/pnas.1523629113. Epub 2016 May 9.
3
Collective timekeeping among cells of the master circadian clock.
J Endocrinol. 2016 Jul;230(1):R27-49. doi: 10.1530/JOE-16-0054. Epub 2016 May 6.
4
Phase shifts to light are altered by antagonists to neuropeptide receptors.
Neuroscience. 2016 Jul 7;327:115-24. doi: 10.1016/j.neuroscience.2016.04.010. Epub 2016 Apr 16.
5
Mechanisms and functions of GABA co-release.
Nat Rev Neurosci. 2016 Mar;17(3):139-45. doi: 10.1038/nrn.2015.21. Epub 2016 Feb 11.
6
In synch but not in step: Circadian clock circuits regulating plasticity in daily rhythms.
Neuroscience. 2016 Apr 21;320:259-80. doi: 10.1016/j.neuroscience.2016.01.072. Epub 2016 Feb 6.
7
Astrocyte calcium signaling: the third wave.
Nat Neurosci. 2016 Feb;19(2):182-9. doi: 10.1038/nn.4201.
8
Distinct Firing Properties of Vasoactive Intestinal Peptide-Expressing Neurons in the Suprachiasmatic Nucleus.
J Biol Rhythms. 2016 Feb;31(1):57-67. doi: 10.1177/0748730415619745. Epub 2015 Dec 27.
9
Novel insights into gliotransmitters.
Curr Opin Pharmacol. 2016 Feb;26:138-45. doi: 10.1016/j.coph.2015.11.010. Epub 2015 Dec 18.
10
Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex.
Brain Struct Funct. 2017 Jan;222(1):651-659. doi: 10.1007/s00429-015-1166-9. Epub 2015 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验