Suppr超能文献

用于精确光遗传学神经调节的啮齿动物大脑中光纤光传输及光致温度变化的特性研究

Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation.

作者信息

Shin Younghoon, Yoo Minsu, Kim Hyung-Sun, Nam Sung-Ki, Kim Hyoung-Ihl, Lee Sun-Kyu, Kim Sohee, Kwon Hyuk-Sang

机构信息

Department of Biomedical Science and Engineering, and Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju 61005, South Korea.

Graduate Program in Computational Neuroscience, University of Chicago, Chicago, Illinois 60637, USA.

出版信息

Biomed Opt Express. 2016 Oct 6;7(11):4450-4471. doi: 10.1364/BOE.7.004450. eCollection 2016 Nov 1.

Abstract

Understanding light intensity and temperature increase is of considerable importance in designing or performing optogenetic experiments. Our study describes the optimal light power at target depth in the rodent brain that would maximize activation of light-gated ion channels while minimizing temperature increase. Monte Carlo (MC) simulations of light delivery were used to provide a guideline for suitable light power at a target depth. In addition, MC simulations with the Pennes bio-heat model using data obtained from measurements with a temperature-measuring cannula having 12.3 mV/°C of thermoelectric sensitivity enabled us to predict tissue heating of 0.116 °C/mW on average at target depth of 563 μm and specifically, a maximum mean plateau temperature increase of 0.25 °C/mW at 100 μm depth for 473 nm light. Our study will help to improve the design and performance of optogenetic experiments while avoiding potential over- and under-illumination.

摘要

在设计或进行光遗传学实验时,了解光强度和温度升高具有相当重要的意义。我们的研究描述了啮齿动物大脑目标深度处的最佳光功率,该功率可在使温度升高最小化的同时,最大程度地激活光门控离子通道。利用光传输的蒙特卡洛(MC)模拟为目标深度处的合适光功率提供指导。此外,使用具有12.3 mV/°C热电灵敏度的温度测量套管测量获得的数据,通过Pennes生物热模型进行的MC模拟使我们能够预测在563μm目标深度处平均组织加热为0.116°C/mW,具体而言,对于473nm光,在100μm深度处最大平均平台温度升高为0.25°C/mW。我们的研究将有助于改进光遗传学实验的设计和性能,同时避免潜在的过度照明和照明不足。

相似文献

1
Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation.
Biomed Opt Express. 2016 Oct 6;7(11):4450-4471. doi: 10.1364/BOE.7.004450. eCollection 2016 Nov 1.
2
Modeling the Effect of Temperature on Membrane Response of Light Stimulation in Optogenetically-Targeted Neurons.
Front Comput Neurosci. 2020 Feb 4;14:5. doi: 10.3389/fncom.2020.00005. eCollection 2020.
4
Light distribution and thermal effects in the rat brain under optogenetic stimulation.
J Biophotonics. 2016 Jun;9(6):576-85. doi: 10.1002/jbio.201500106. Epub 2015 Jul 20.
5
Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.
Phys Med Biol. 2016 Mar 21;61(6):2265-82. doi: 10.1088/0031-9155/61/6/2265. Epub 2016 Feb 25.
6
Detection of laser-associated heating in the brain during simultaneous fMRI and optogenetic stimulation.
Magn Reson Med. 2023 Feb;89(2):729-737. doi: 10.1002/mrm.29464. Epub 2022 Sep 25.
7
Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications(1,2,3).
eNeuro. 2016 Feb 2;3(1). doi: 10.1523/ENEURO.0059-15.2015. eCollection 2016 Jan-Feb.
8
Lensed fiber-optic probe design for efficient photon collection in scattering media.
Biomed Opt Express. 2014 Dec 17;6(1):191-210. doi: 10.1364/BOE.6.000191. eCollection 2015 Jan 1.
9
Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
PLoS One. 2014 Nov 10;9(11):e111488. doi: 10.1371/journal.pone.0111488. eCollection 2014.

引用本文的文献

1
Optogenetics for light control of biological systems.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00136-4. Epub 2022 Jul 21.
2
LINCs Are Vulnerable to Epileptic Insult and Fail to Provide Seizure Control via On-Demand Activation.
eNeuro. 2023 Feb 15;10(2). doi: 10.1523/ENEURO.0195-22.2022. Print 2023 Feb.
3
Impact of optogenetic pulse design on CA3 learning and replay: A neural model.
Cell Rep Methods. 2022 May 3;2(5):100208. doi: 10.1016/j.crmeth.2022.100208. eCollection 2022 May 23.
5
Wireless and battery-free technologies for neuroengineering.
Nat Biomed Eng. 2023 Apr;7(4):405-423. doi: 10.1038/s41551-021-00683-3. Epub 2021 Mar 8.
7
Off-Peak 594-nm Light Surpasses On-Peak 532-nm Light in Silencing Distant ArchT-Expressing Neurons In Vivo.
iScience. 2020 Jul 24;23(7):101276. doi: 10.1016/j.isci.2020.101276. Epub 2020 Jun 16.
8
Noisy Light Augments the Na Current in Somatosensory Pyramidal Neurons of Optogenetic Transgenic Mice.
Front Neurosci. 2020 May 20;14:490. doi: 10.3389/fnins.2020.00490. eCollection 2020.
9
Inhibitory effect of 980-nm laser on neural activity of the rat's cochlear nucleus.
Neurophotonics. 2019 Jul;6(3):035009. doi: 10.1117/1.NPh.6.3.035009. Epub 2019 Aug 27.

本文引用的文献

1
Mesh-based Monte Carlo method for fibre-optic optogenetic neural stimulation with direct photon flux recording strategy.
Phys Med Biol. 2016 Mar 21;61(6):2265-82. doi: 10.1088/0031-9155/61/6/2265. Epub 2016 Feb 25.
2
OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics.
Biomed Opt Express. 2015 Nov 16;6(12):4859-70. doi: 10.1364/BOE.6.004859. eCollection 2015 Dec 1.
3
Computational Study on the Thermal Effects of Implantable Magnetic Stimulation Based on Planar Coils.
IEEE Trans Biomed Eng. 2016 Jan;63(1):158-67. doi: 10.1109/TBME.2015.2490244. Epub 2015 Oct 14.
4
Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics.
Cell Rep. 2015 Jul 21;12(3):525-34. doi: 10.1016/j.celrep.2015.06.036. Epub 2015 Jul 9.
5
Lensed fiber-optic probe design for efficient photon collection in scattering media.
Biomed Opt Express. 2014 Dec 17;6(1):191-210. doi: 10.1364/BOE.6.000191. eCollection 2015 Jan 1.
6
Light scattering properties vary across different regions of the adult mouse brain.
PLoS One. 2013 Jul 9;8(7):e67626. doi: 10.1371/journal.pone.0067626. Print 2013.
7
Modeling of the temporal effects of heating during infrared neural stimulation.
J Biomed Opt. 2013 Mar;18(3):035004. doi: 10.1117/1.JBO.18.3.035004.
8
fMRI response to blue light delivery in the naïve brain: implications for combined optogenetic fMRI studies.
Neuroimage. 2013 Feb 1;66:634-41. doi: 10.1016/j.neuroimage.2012.10.074. Epub 2012 Nov 2.
9
Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron.
J Neurophysiol. 2012 Jun;107(12):3235-45. doi: 10.1152/jn.00501.2011. Epub 2012 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验