Subramanian Kaushik, Gabay Ilan, Ferhanoğlu Onur, Shadfan Adam, Pawlowski Michal, Wang Ye, Tkaczyk Tomasz, Ben-Yakar Adela
Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA; These authors contributed equally to this work.
Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA.
Biomed Opt Express. 2016 Oct 19;7(11):4639-4653. doi: 10.1364/BOE.7.004639. eCollection 2016 Nov 1.
We present the development of a 5 mm, piezo-actuated, ultrafast laser scalpel for fast tissue microsurgery. Delivery of micro-Joules level energies to the tissue was made possible by a large, 31 μm, air-cored inhibited-coupling Kagome fiber. We overcome the fiber's low NA by using lenses made of high refractive index ZnS, which produced an optimal focusing condition with 0.23 NA objective. The optical design achieved a focused laser spot size of 4.5 μm diameter covering a 75 × 75 μm scan area in a miniaturized setting. The probe could deliver the maximum available laser power, achieving an average fluence of 7.8 J/cm on the tissue surface at 62% transmission efficiency. Such fluences could produce uninterrupted, 40 μm deep cuts at translational speeds of up to 5 mm/s along the tissue. We predicted that the best combination of speed and coverage exists at 8 mm/s for our conditions. The onset of nonlinear absorption in ZnS, however, limited the probe's energy delivery capabilities to 1.4 μJ for linear operation at 1.5 picosecond pulse-widths of our fiber laser. Alternatives like broadband CaF crystals should mitigate such nonlinear limiting behavior. Improved opto-mechanical design and appropriate material selection should allow substantially higher fluence delivery and propel such Kagome fiber-based scalpels towards clinical translation.
我们展示了一种用于快速组织显微手术的5毫米压电驱动超快激光手术刀的研发情况。一根大尺寸的31微米空芯抑制耦合Kagome光纤使得向组织传递微焦耳级能量成为可能。我们通过使用由高折射率ZnS制成的透镜克服了光纤的低数值孔径问题,该透镜与0.23数值孔径的物镜产生了最佳聚焦条件。光学设计在小型化设置中实现了直径4.5微米的聚焦激光光斑尺寸,覆盖75×75微米的扫描区域。该探头能够传递最大可用激光功率,在62%的传输效率下,在组织表面实现了7.8焦每平方厘米的平均能量密度。这样的能量密度能够以高达5毫米每秒的平移速度在组织上产生不间断的40微米深切口。我们预测在我们的条件下,速度和覆盖范围的最佳组合存在于8毫米每秒。然而,ZnS中非线性吸收的出现将探头在我们的光纤激光器1.5皮秒脉冲宽度下线性操作的能量传递能力限制在了1.4微焦耳。像宽带CaF晶体这样的替代品应该会减轻这种非线性限制行为。改进的光机械设计和合适的材料选择应该能够实现更高的能量密度传递,并推动这种基于Kagome光纤的手术刀向临床转化。