Suppr超能文献

使用定量光学相干弹性成像技术对弹性进行非线性表征。

Nonlinear characterization of elasticity using quantitative optical coherence elastography.

作者信息

Qiu Yi, Zaki Farzana R, Chandra Namas, Chester Shawn A, Liu Xuan

机构信息

Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.

出版信息

Biomed Opt Express. 2016 Oct 26;7(11):4702-4710. doi: 10.1364/BOE.7.004702. eCollection 2016 Nov 1.

Abstract

Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.

摘要

光学相干弹性成像(OCE)已被用于在微观尺度上对生物组织进行力学特性分析。在这项工作中,我们使用了定量光学相干弹性成像(qOCE),这是我们最近开发的一项新技术,来研究生物组织的非线性弹性行为。qOCE系统有一个光纤探头,用于施加压缩力使探头尖端下方的组织变形。利用光谱域光学相干断层扫描(OCT)引擎检测到的空分复用光学相干断层扫描(OCT)信号,我们能够同时量化与施加力成正比的探头变形,并量化组织变形。换句话说,我们的qOCE系统使我们能够建立机械刺激与组织反应之间的关系,以表征生物组织的硬度。大多数生物组织具有非线性弹性行为,并且我们的qOCE系统所表征的表观应力-应变关系在较宽的应变范围内对于组织模拟体模以及生物组织都是非线性的。我们的实验结果表明,OCE中力的量化对于准确表征组织力学性能至关重要,并且qOCE技术能够基于通常为非线性的组织弹性来区分生物组织。

相似文献

1
Nonlinear characterization of elasticity using quantitative optical coherence elastography.
Biomed Opt Express. 2016 Oct 26;7(11):4702-4710. doi: 10.1364/BOE.7.004702. eCollection 2016 Nov 1.
2
Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties.
Biomed Opt Express. 2016 Jan 26;7(2):688-700. doi: 10.1364/BOE.7.000688. eCollection 2016 Feb 1.
3
Optical coherence elastography and its applications for the biomechanical characterization of tissues.
J Biophotonics. 2023 Dec;16(12):e202300292. doi: 10.1002/jbio.202300292. Epub 2023 Oct 9.
4
Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues.
Appl Spectrosc Rev. 2019;54(6):457-481. doi: 10.1080/05704928.2018.1467436. Epub 2018 Jun 25.
6
Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances.
J Biophotonics. 2021 Feb;14(2):e202000257. doi: 10.1002/jbio.202000257. Epub 2020 Nov 3.
7
Quantitative Optical Coherence Elastography for Robust Stiffness Assessment.
Appl Sci (Basel). 2018 Aug;8(8). doi: 10.3390/app8081255. Epub 2018 Jul 30.
8
Optical coherence elastography in ophthalmology.
J Biomed Opt. 2017 Dec;22(12):1-28. doi: 10.1117/1.JBO.22.12.121720.
10
Digital image correlation-based optical coherence elastography.
J Biomed Opt. 2013 Dec;18(12):121515. doi: 10.1117/1.JBO.18.12.121515.

引用本文的文献

2
A novel stress sensor enables accurate estimation of micro-scale tissue mechanics in quantitative micro-elastography.
APL Bioeng. 2024 Sep 23;8(3):036115. doi: 10.1063/5.0220309. eCollection 2024 Sep.
3
Learning-based distortion correction enables proximal-scanning endoscopic OCT elastography.
Biomed Opt Express. 2024 Jun 26;15(7):4345-4364. doi: 10.1364/BOE.528522. eCollection 2024 Jul 1.
4
stress estimation in quantitative micro-elastography.
Biomed Opt Express. 2024 May 3;15(6):3609-3626. doi: 10.1364/BOE.522002. eCollection 2024 Jun 1.
5
Analysis of friction in quantitative micro-elastography.
Biomed Opt Express. 2023 Sep 11;14(10):5127-5147. doi: 10.1364/BOE.494013. eCollection 2023 Oct 1.
7
Intravascular optical coherence elastography.
Biomed Opt Express. 2022 Sep 23;13(10):5418-5433. doi: 10.1364/BOE.470039. eCollection 2022 Oct 1.
8
Compression optical coherence elastography versus strain ultrasound elastography for breast cancer detection and differentiation: pilot study.
Biomed Opt Express. 2022 Apr 21;13(5):2859-2881. doi: 10.1364/BOE.451059. eCollection 2022 May 1.
10
Measuring and Modelling Nonlinear Elasticity of Ex Vivo Mouse Muscles.
J Healthc Eng. 2021 Nov 17;2021:5579232. doi: 10.1155/2021/5579232. eCollection 2021.

本文引用的文献

2
Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties.
Biomed Opt Express. 2016 Jan 26;7(2):688-700. doi: 10.1364/BOE.7.000688. eCollection 2016 Feb 1.
4
Motion analysis and removal in intensity variation based OCT angiography.
Biomed Opt Express. 2014 Oct 7;5(11):3833-47. doi: 10.1364/BOE.5.003833. eCollection 2014 Nov 1.
5
An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.
J Mater Sci Mater Med. 2014 Jul;25(7):1623-30. doi: 10.1007/s10856-014-5198-0. Epub 2014 Mar 28.
7
Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
Biomech Model Mechanobiol. 2013 Jun;12(3):511-31. doi: 10.1007/s10237-012-0421-8. Epub 2012 Jul 26.
8
Needle optical coherence elastography for tissue boundary detection.
Opt Lett. 2012 Jun 15;37(12):2310-2. doi: 10.1364/OL.37.002310.
9
DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW.
J Innov Opt Health Sci. 2010 Oct;3(4):221-233. doi: 10.1142/S1793545810001180.
10
Model-based elastography: a survey of approaches to the inverse elasticity problem.
Phys Med Biol. 2012 Feb 7;57(3):R35-73. doi: 10.1088/0031-9155/57/3/R35. Epub 2012 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验