Suppr超能文献

骨肉瘤中存活与非存活肿瘤识别的计算机辅助图像分割与分类

COMPUTER AIDED IMAGE SEGMENTATION AND CLASSIFICATION FOR VIABLE AND NON-VIABLE TUMOR IDENTIFICATION IN OSTEOSARCOMA.

作者信息

Arunachalam Harish Babu, Mishra Rashika, Armaselu Bogdan, Daescu Ovidiu, Martinez Maria, Leavey Patrick, Rakheja Dinesh, Cederberg Kevin, Sengupta Anita, Ni'suilleabhain Molly

机构信息

Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA,

出版信息

Pac Symp Biocomput. 2017;22:195-206. doi: 10.1142/9789813207813_0020.

Abstract

Osteosarcoma is one of the most common types of bone cancer in children. To gauge the extent of cancer treatment response in the patient after surgical resection, the H&E stained image slides are manually evaluated by pathologists to estimate the percentage of necrosis, a time consuming process prone to observer bias and inaccuracy. Digital image analysis is a potential method to automate this process, thus saving time and providing a more accurate evaluation. The slides are scanned in Aperio Scanscope, converted to digital Whole Slide Images (WSIs) and stored in SVS format. These are high resolution images, of the order of 109 pixels, allowing up to 40X magnification factor. This paper proposes an image segmentation and analysis technique for segmenting tumor and non-tumor regions in histopathological WSIs of osteosarcoma datasets. Our approach is a combination of pixel-based and object-based methods which utilize tumor properties such as nuclei cluster, density, and circularity to classify tumor regions as viable and non-viable. A K-Means clustering technique is used for tumor isolation using color normalization, followed by multi-threshold Otsu segmentation technique to further classify tumor region as viable and non-viable. Then a Flood-fill algorithm is applied to cluster similar pixels into cellular objects and compute cluster data for further analysis of regions under study. To the best of our knowledge this is the first comprehensive solution that is able to produce such a classification for Osteosarcoma cancer. The results are very conclusive in identifying viable and non-viable tumor regions. In our experiments, the accuracy of the discussed approach is 100% in viable tumor and coagulative necrosis identification while it is around 90% for fibrosis and acellular/hypocellular tumor osteoid, for all the sampled datasets used. We expect the developed software to lead to a significant increase in accuracy and decrease in inter-observer variability in assessment of necrosis by the pathologists and a reduction in the time spent by the pathologists in such assessments.

摘要

骨肉瘤是儿童中最常见的骨癌类型之一。为了评估手术切除后患者的癌症治疗反应程度,病理学家会手动评估苏木精-伊红(H&E)染色的图像切片,以估计坏死百分比,这是一个耗时的过程,容易出现观察者偏差和不准确的情况。数字图像分析是使这一过程自动化的一种潜在方法,从而节省时间并提供更准确的评估。切片在Aperio Scanscope中进行扫描,转换为数字全切片图像(WSIs)并以SVS格式存储。这些是高分辨率图像,像素数量约为109,放大倍数可达40倍。本文提出了一种图像分割和分析技术,用于在骨肉瘤数据集的组织病理学WSIs中分割肿瘤和非肿瘤区域。我们的方法是基于像素和基于对象的方法的结合,利用肿瘤特性,如细胞核簇、密度和圆形度,将肿瘤区域分类为存活和非存活区域。使用K均值聚类技术通过颜色归一化进行肿瘤分离,然后采用多阈值大津分割技术进一步将肿瘤区域分类为存活和非存活区域。接着应用泛洪填充算法将相似像素聚类为细胞对象,并计算聚类数据以进一步分析研究区域。据我们所知,这是第一个能够对骨肉瘤进行此类分类的综合解决方案。结果在识别存活和非存活肿瘤区域方面非常具有决定性。在我们的实验中,对于所有使用的采样数据集,所讨论方法在存活肿瘤和凝固性坏死识别中的准确率为100%,而在纤维化和无细胞/低细胞肿瘤骨样组织识别中的准确率约为90%。我们期望开发的软件能够显著提高病理学家评估坏死时的准确性,降低观察者间的变异性,并减少病理学家在此类评估中花费的时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验