Suppr超能文献

追踪噪声环境下单细胞转录组轨迹中的共调控网络动态

TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.

作者信息

Cordero Pablo, Stuart Joshua M

机构信息

UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA.

出版信息

Pac Symp Biocomput. 2017;22:576-587. doi: 10.1142/9789813207813_0053.

Abstract

The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.

摘要

单细胞水平上基因表达数据的可用性使得探究诸如分化和肿瘤发生等复杂生物过程的分子基础成为可能。从静态单细胞转录组测量中重建进展“轨迹”的有前景的新方法已经出现。然而,目前尚不清楚如何充分模拟这些数据中相当程度的噪声,以阐明基因调控网络的重新布线。在此,我们提出了一个名为“形态发生轨迹及其相关调控的单细胞推断”(SCIMITAR)的框架,该框架通过在高维曲线中采用高斯混合的连续参数化,从静态单细胞转录组中推断进展。SCIMITAR从数据中生成丰富的模型,突出显示具有与推断进展相关的表达和共表达模式的基因。此外,SCIMITAR从涉及的轨迹演化共表达网络中提取调控状态。我们在模拟数据上对该方法进行基准测试,以表明它能产生准确的细胞排序和基因网络推断。应用于对单细胞人类胎儿神经元数据集的解释时,SCIMITAR在标准差异表达测试遗漏的基石神经分化途径中发现了与进展相关的基因。最后,通过利用进展过程中基因-基因共表达关系的重新布线,该方法揭示了共调控状态和轨迹依赖性基因模块的兴衰。这些分析表明新的转录因子参与神经分化,包括多功能NFAT途径的假定辅助因子。

相似文献

1
TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.
Pac Symp Biocomput. 2017;22:576-587. doi: 10.1142/9789813207813_0053.
2
Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation.
Gigascience. 2018 Nov 1;7(11):giy117. doi: 10.1093/gigascience/giy117.
3
Node-based learning of differential networks from multi-platform gene expression data.
Methods. 2017 Oct 1;129:41-49. doi: 10.1016/j.ymeth.2017.05.014. Epub 2017 Jun 1.
7
WASABI: a dynamic iterative framework for gene regulatory network inference.
BMC Bioinformatics. 2019 May 2;20(1):220. doi: 10.1186/s12859-019-2798-1.
8
An estimation method for a cellular-state-specific gene regulatory network along tree-structured gene expression profiles.
Gene. 2013 Apr 10;518(1):17-25. doi: 10.1016/j.gene.2012.11.090. Epub 2012 Dec 21.
9
Gene expression complex networks: synthesis, identification, and analysis.
J Comput Biol. 2011 Oct;18(10):1353-67. doi: 10.1089/cmb.2010.0118. Epub 2011 May 6.
10
Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
BMC Genomics. 2015;16 Suppl 2(Suppl 2):S12. doi: 10.1186/1471-2164-16-S2-S12. Epub 2015 Jan 21.

引用本文的文献

3
Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods.
Bioinform Biol Insights. 2024 Nov 4;18:11779322241287120. doi: 10.1177/11779322241287120. eCollection 2024.
4
From time-series transcriptomics to gene regulatory networks: A review on inference methods.
PLoS Comput Biol. 2023 Aug 10;19(8):e1011254. doi: 10.1371/journal.pcbi.1011254. eCollection 2023 Aug.
5
Prioritizing Autism Risk Genes using Personalized Graphical Models Estimated from Single Cell RNA-seq Data.
J Am Stat Assoc. 2022;117(537):38-51. doi: 10.1080/01621459.2021.1933495. Epub 2021 Jul 21.
6
Network inference with Granger causality ensembles on single-cell transcriptomics.
Cell Rep. 2022 Feb 8;38(6):110333. doi: 10.1016/j.celrep.2022.110333.
8
WASABI: a dynamic iterative framework for gene regulatory network inference.
BMC Bioinformatics. 2019 May 2;20(1):220. doi: 10.1186/s12859-019-2798-1.
9
Mapping gene regulatory networks from single-cell omics data.
Brief Funct Genomics. 2018 Jul 1;17(4):246-254. doi: 10.1093/bfgp/elx046.
10
The Human Cell Atlas: Technical approaches and challenges.
Brief Funct Genomics. 2018 Jul 1;17(4):283-294. doi: 10.1093/bfgp/elx029.

本文引用的文献

1
The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.
Nat Biotechnol. 2016 Jun 9;34(6):591-3. doi: 10.1038/nbt.3498.
2
SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data.
Genome Biol. 2016 May 23;17(1):106. doi: 10.1186/s13059-016-0975-3.
3
Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology.
Stem Cell Reports. 2015 Aug 11;5(2):157-65. doi: 10.1016/j.stemcr.2015.06.008. Epub 2015 Jul 30.
4
A survey of human brain transcriptome diversity at the single cell level.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90. doi: 10.1073/pnas.1507125112. Epub 2015 May 18.
5
Decoding the regulatory network of early blood development from single-cell gene expression measurements.
Nat Biotechnol. 2015 Mar;33(3):269-276. doi: 10.1038/nbt.3154. Epub 2015 Feb 9.
7
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Nat Biotechnol. 2014 Apr;32(4):381-386. doi: 10.1038/nbt.2859. Epub 2014 Mar 23.
8
Dual functions of hypoxia-inducible factor 1 alpha for the commitment of mouse embryonic stem cells toward a neural lineage.
Stem Cells Dev. 2014 Sep 15;23(18):2143-55. doi: 10.1089/scd.2013.0278. Epub 2014 Feb 7.
9
Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.
Cell Stem Cell. 2013 Oct 3;13(4):492-505. doi: 10.1016/j.stem.2013.07.017. Epub 2013 Sep 12.
10
CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification.
Cell Rep. 2012 Sep 27;2(3):666-73. doi: 10.1016/j.celrep.2012.08.003. Epub 2012 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验