ACS Appl Mater Interfaces. 2019 Jan 9;11(1):219-225. doi: 10.1021/acsami.8b17239. Epub 2018 Dec 21.
Rapid progresses in developing the fast, low-cost, and reliable methods for DNA sequencing are envisaged for development of personalized medicine. In this respect, nanotechnology has paved the role for the development of advanced DNA sequencing techniques including sequencing with solid-state nanopores or nanogaps. Herein, we have explored the application of a black phosphorene based nanogap-device for DNA sequencing. Using density-functional-theory based non-equilibrium Green's function approach, we have computed transverse transmission and current-voltage ( I- V) characteristics of all the four DNA nucleotides (deoxy adenosine monophosphate, deoxy guanidine monophosphate, deoxy thymidine monophosphate, and deoxy cytosine monophosphate) as functions of applied bias voltages. We deduce that it is in principle; possible to differentiate between all the four nucleotides by three sequencing runs at distinct applied bias voltages, i.e., at 0.2, 1.4, and 1.6 V, where individual identification of all the four nucleotides may be possible. Hence, we believe our study might be helpful for experimentalist towards the development of a phosphorene based nanodevice for DNA sequencing to diagnose critical diseases.
快速、低成本、可靠的 DNA 测序方法的快速发展,被认为是个性化医疗发展的关键。在这方面,纳米技术为先进的 DNA 测序技术的发展铺平了道路,包括使用固态纳米孔或纳米间隙进行测序。在本文中,我们探索了基于黑磷烯的纳米间隙器件在 DNA 测序中的应用。利用基于密度泛函理论的非平衡格林函数方法,我们计算了所有四种 DNA 核苷酸(脱氧腺苷单磷酸、脱氧鸟苷单磷酸、脱氧胸苷单磷酸和脱氧胞苷单磷酸)作为施加偏置电压函数的横向传输和电流-电压(I-V)特性。我们推断,原则上可以通过在三个不同的施加偏置电压(即 0.2、1.4 和 1.6V)下进行三次测序来区分所有四种核苷酸,其中可能可以单独识别所有四种核苷酸。因此,我们相信我们的研究可能有助于实验人员开发基于黑磷烯的纳米器件进行 DNA 测序,以诊断重大疾病。