LaSarre Breah, McCully Alexandra L, Lennon Jay T, McKinlay James B
Department of Biology, Indiana University, Bloomington, IN, USA.
ISME J. 2017 Feb;11(2):337-348. doi: 10.1038/ismej.2016.141. Epub 2016 Nov 29.
Microbial interactions, including mutualistic nutrient exchange (cross-feeding), underpin the flow of energy and materials in all ecosystems. Metabolic exchanges are difficult to assess within natural systems. As such, the impact of exchange levels on ecosystem dynamics and function remains unclear. To assess how cross-feeding levels govern mutualism behavior, we developed a bacterial coculture amenable to both modeling and experimental manipulation. In this coculture, which resembles an anaerobic food web, fermentative Escherichia coli and photoheterotrophic Rhodopseudomonas palustris obligately cross-feed carbon (organic acids) and nitrogen (ammonium). This reciprocal exchange enforced immediate stable coexistence and coupled species growth. Genetic engineering of R. palustris to increase ammonium cross-feeding elicited increased reciprocal organic acid production from E. coli, resulting in culture acidification. Consequently, organic acid function shifted from that of a nutrient to an inhibitor, ultimately biasing species ratios and decreasing carbon transformation efficiency by the community; nonetheless, stable coexistence persisted at a new equilibrium. Thus, disrupting the symmetry of nutrient exchange can amplify alternative roles of an exchanged resource and thereby alter community function. These results have implications for our understanding of mutualistic interactions and the use of microbial consortia as biotechnology.
微生物相互作用,包括互利的养分交换(交叉喂养),是所有生态系统中能量和物质流动的基础。代谢交换在自然系统中难以评估。因此,交换水平对生态系统动态和功能的影响仍不清楚。为了评估交叉喂养水平如何控制共生行为,我们开发了一种既适合建模又适合实验操作的细菌共培养体系。在这种类似于厌氧食物网的共培养体系中,发酵型大肠杆菌和光异养型沼泽红假单胞菌必须交叉喂养碳(有机酸)和氮(铵)。这种相互交换促使两者立即稳定共存并使物种生长耦合。对沼泽红假单胞菌进行基因工程改造以增加铵的交叉喂养,会导致大肠杆菌产生更多的相互有机酸,从而导致培养液酸化。因此,有机酸的功能从养分转变为抑制剂,最终使物种比例失衡,并降低群落的碳转化效率;尽管如此,稳定共存仍在新的平衡状态下持续。因此,破坏养分交换的对称性会放大交换资源的其他作用,从而改变群落功能。这些结果对我们理解共生相互作用以及将微生物群落用作生物技术具有启示意义。