Suppr超能文献

老年女性自我报告的关节炎与肌肉骨骼体征和症状之间的不一致。

Discordance between self-reported arthritis and musculoskeletal signs and symptoms in older women.

作者信息

Lo Tkt, Parkinson Lynne, Cunich Michelle, Byles Julie

机构信息

Research Centre for Gender, Health and Ageing, HMRI, University of Newcastle, C/- University Drive, Callaghan, NSW, 2308, Australia.

Central Queensland University, Rockhampton, QLD, 4701, Australia.

出版信息

BMC Musculoskelet Disord. 2016 Dec 1;17(1):494. doi: 10.1186/s12891-016-1349-4.

Abstract

BACKGROUND

Arthritis is a gendered disease where women have a higher prevalence and more disability than men with arthritis of the same age. Health survey data is a major source of information for monitoring of the burden of arthritis. The validity of self-reported arthritis and the determinants of its accuracy among women have not been thoroughly studied. The objectives of this study were to: 1) examine the agreement between self-report diagnosed arthritis and musculoskeletal signs and symptoms in community-living older women; 2) estimate the sensitivity, specificity, and predictive values of self-reported arthritis; and 3) assess the factors associated with the disagreement.

METHODS

A cross-sectional survey of women was undertaken in 2012-13. The health survey asked women about diagnosed arthritis and musculoskeletal signs and symptoms. Agreement between self-reported arthritis and musculoskeletal signs symptoms was measured by Cohen's kappa. Sensitivity, specificity, and predictive values of self-reported arthritis were estimated using musculoskeletal signs and symptoms as the reference standard. Factors associated with disagreement between self-reported arthritis and the reference standard were examined using multiple logistic regression.

RESULTS

There were 223 participants self-reported arthritis and 347 did not. A greater number of participants who self-reported arthritis were obese compared to those who did not report arthritis. Those who reported arthritis had worse health, physical functioning, and arthritis symptom measures. Among the 570 participants, 198 had musculoskeletal signs and symptoms suggesting arthritis (the reference standard). Agreement between self-reported arthritis and the reference standard was moderate (kappa = 0.41). Sensitivity, specificity, and positive and negative predictive values of self-reported arthritis in older women were 66.7, 75.5, 59.2, and 81.0% respectively. Regression analysis results indicated that false-positive is associated with better health measured by the Short Form 36 physical summary score, the Health Assessment Questionnaire disability index, or the Western Ontario and McMaster University Osteoarthritis Index total score; whereas false-negative is negatively associated with these variables.

CONCLUSION

While some women who reported diagnosed arthritis did not have recent musculoskeletal signs or symptoms, others with the signs and symptoms did not report diagnosed arthritis. Researchers should use caution when employing self-reported arthritis as the case-definition in epidemiological studies.

摘要

背景

关节炎是一种具有性别差异的疾病,在同一年龄段患有关节炎的女性中,其患病率高于男性,且残疾程度更严重。健康调查数据是监测关节炎负担的主要信息来源。自我报告的关节炎的有效性及其在女性中准确性的决定因素尚未得到充分研究。本研究的目的是:1)检查社区居住的老年女性中自我报告诊断的关节炎与肌肉骨骼体征和症状之间的一致性;2)估计自我报告的关节炎的敏感性、特异性和预测值;3)评估与不一致相关的因素。

方法

在2012 - 13年对女性进行了一项横断面调查。健康调查询问了女性关于已诊断的关节炎以及肌肉骨骼体征和症状。自我报告的关节炎与肌肉骨骼体征症状之间的一致性通过科恩kappa系数进行测量。以肌肉骨骼体征和症状作为参考标准,估计自我报告的关节炎的敏感性、特异性和预测值。使用多元逻辑回归分析自我报告的关节炎与参考标准之间不一致的相关因素。

结果

有223名参与者自我报告患有关节炎,347名未报告。与未报告关节炎的参与者相比,自我报告患有关节炎的参与者中肥胖者更多。报告患有关节炎的人在健康状况、身体功能和关节炎症状指标方面更差。在570名参与者中,198人有提示关节炎的肌肉骨骼体征和症状(参考标准)。自我报告的关节炎与参考标准之间的一致性为中等(kappa = 0.41)。老年女性中自我报告的关节炎的敏感性、特异性、阳性和阴性预测值分别为66.7%、75.5%、59.2%和81.0%。回归分析结果表明,假阳性与通过简短健康调查问卷身体总结评分、健康评估问卷残疾指数或西安大略和麦克马斯特大学骨关节炎指数总分衡量的更好健康状况相关;而假阴性与这些变量呈负相关。

结论

虽然一些报告已诊断关节炎的女性近期没有肌肉骨骼体征或症状,但其他有这些体征和症状的女性并未报告已诊断关节炎。研究人员在流行病学研究中使用自我报告的关节炎作为病例定义时应谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0790/5133957/791330a52a8a/12891_2016_1349_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验