Nichols Matthew, Elustondo Pia A, Warford Jordan, Thirumaran Aruloli, Pavlov Evgeny V, Robertson George S
1 Faculty of Medicine, Department of Pharmacology, Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, Canada.
2 Faculty of Medicine, Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
J Cereb Blood Flow Metab. 2017 Aug;37(8):3027-3041. doi: 10.1177/0271678X16682250. Epub 2016 Jan 1.
The effects of global mitochondrial calcium (Ca) uniporter (MCU) deficiency on hypoxic-ischemic (HI) brain injury, neuronal Ca handling, bioenergetics and hypoxic preconditioning (HPC) were examined. Forebrain mitochondria isolated from global MCU nulls displayed markedly reduced Ca uptake and Ca-induced opening of the membrane permeability transition pore. Despite evidence that these effects should be neuroprotective, global MCU nulls and wild-type (WT) mice suffered comparable HI brain damage. Energetic stress enhanced glycolysis and depressed Complex I activity in global MCU null, relative to WT, cortical neurons. HI reduced forebrain NADH levels more in global MCU nulls than WT mice suggesting that increased glycolytic consumption of NADH suppressed Complex I activity. Compared to WT neurons, pyruvate dehydrogenase (PDH) was hyper-phosphorylated in MCU nulls at several sites that lower the supply of substrates for the tricarboxylic acid cycle. Elevation of cytosolic Ca with glutamate or ionomycin decreased PDH phosphorylation in MCU null neurons suggesting the use of alternative mitochondrial Ca transport. Under basal conditions, global MCU nulls showed similar increases of Ca handling genes in the hippocampus as WT mice subjected to HPC. We propose that long-term adaptations, common to HPC, in global MCU nulls compromise resistance to HI brain injury and disrupt HPC.
研究了整体线粒体钙单向转运体(MCU)缺乏对缺氧缺血性(HI)脑损伤、神经元钙处理、生物能量学和缺氧预处理(HPC)的影响。从整体MCU基因敲除小鼠分离的前脑线粒体显示钙摄取显著减少,且钙诱导的膜通透性转换孔开放减少。尽管有证据表明这些效应应具有神经保护作用,但整体MCU基因敲除小鼠和野生型(WT)小鼠遭受的HI脑损伤程度相当。与WT相比,能量应激增强了整体MCU基因敲除小鼠皮质神经元的糖酵解并降低了复合体I的活性。HI使整体MCU基因敲除小鼠前脑NADH水平的降低比WT小鼠更明显,这表明NADH糖酵解消耗增加抑制了复合体I的活性。与WT神经元相比,丙酮酸脱氢酶(PDH)在MCU基因敲除小鼠的几个位点过度磷酸化,这些位点会降低三羧酸循环底物的供应。用谷氨酸或离子霉素升高胞质钙可降低MCU基因敲除神经元中PDH的磷酸化,这表明存在替代性线粒体钙转运。在基础条件下,整体MCU基因敲除小鼠海马体中钙处理基因的增加与接受HPC的WT小鼠相似。我们提出,整体MCU基因敲除小鼠中与HPC共有的长期适应性改变会损害对HI脑损伤的抵抗力并破坏HPC。