Llorente-Folch I, Rueda C B, Pardo B, Szabadkai G, Duchen M R, Satrustegui J
Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
J Physiol. 2015 Aug 15;593(16):3447-62. doi: 10.1113/JP270254.
Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca(2+) acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca(2+) stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca(2+) -regulated mitochondrial carriers, whereas an increase in matrix Ca(2+) stimulates the citric acid cycle and ATP synthase. The aspartate-glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate-aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca(2+) and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K(+) -depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca(2+) influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca(2+) ]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca(2+) signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca(2+) is increased and mitochondria fragmented. Thus, the fine tuning of Ca(2+) signals plays a key role in shaping mitochondrial bioenergetics.
钙信号传导是神经系统功能的基础,与跨膜离子梯度的变化相关。尽管恢复离子梯度在能量上代价高昂,但细胞内Ca(2+)的升高通过多种途径作用以增加ATP合成,使能量供应与需求相匹配。增加胞质Ca(2+)通过激活Ca(2+)调节的线粒体载体刺激代谢物跨线粒体内膜转运,而基质Ca(2+)的增加则刺激柠檬酸循环和ATP合酶。天冬氨酸-谷氨酸交换体Aralar/AGC1(Slc25a12)是苹果酸-天冬氨酸穿梭(MAS)的一个组成部分,受胞质Ca(2+)适度增加的刺激,并通过增强丙酮酸向线粒体的供应来上调皮质神经元的呼吸作用。在Aralar/AGC1基因敲除神经元中,对小(卡巴胆碱)和中等(K(+)去极化)工作负荷的呼吸增加反应失败以及对高工作负荷(藜芦碱)的呼吸刺激减弱,反映了MAS活性受损和线粒体丙酮酸供应受限。在对大工作负荷(藜芦碱)的反应中,在没有MAS的情况下,通过线粒体钙单向转运体(MCU)的Ca(2+)内流和基质[Ca(2+)]的升高会发生呼吸的急性刺激。尽管MCU复合体在工作诱导的中枢神经系统神经元呼吸刺激中的生理重要性尚未阐明,但异常的线粒体Ca(2+)信号传导会导致病理状况。事实上,MCU复合体的调节因子MICU1的功能丧失突变与神经肌肉疾病有关。在患者来源的MICU1缺陷成纤维细胞中,静息基质Ca(2+)增加且线粒体碎片化。因此,Ca(2+)信号的精细调节在塑造线粒体生物能量学中起关键作用。