Benoit Didier, Ladefoged Claes N, Rezaei Ahmadreza, Keller Sune H, Andersen Flemming L, Højgaard Liselotte, Hansen Adam E, Holm Søren, Nuyts Johan
Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
Phys Med Biol. 2016 Dec 21;61(24):8854-8874. doi: 10.1088/1361-6560/61/24/8854. Epub 2016 Dec 2.
For quantitative tracer distribution in positron emission tomography, attenuation correction is essential. In a hybrid PET/CT system the CT images serve as a basis for generation of the attenuation map, but in PET/MR, the MR images do not have a similarly simple relationship with the attenuation map. Hence attenuation correction in PET/MR systems is more challenging. Typically either of two MR sequences are used: the Dixon or the ultra-short time echo (UTE) techniques. However these sequences have some well-known limitations. In this study, a reconstruction technique based on a modified and optimized non-TOF MLAA is proposed for PET/MR brain imaging. The idea is to tune the parameters of the MLTR applying some information from an attenuation image computed from the UTE sequences and a T1w MR image. In this MLTR algorithm, an [Formula: see text] parameter is introduced and optimized in order to drive the algorithm to a final attenuation map most consistent with the emission data. Because the non-TOF MLAA is used, a technique to reduce the cross-talk effect is proposed. In this study, the proposed algorithm is compared to the common reconstruction methods such as OSEM using a CT attenuation map, considered as the reference, and OSEM using the Dixon and UTE attenuation maps. To show the robustness and the reproducibility of the proposed algorithm, a set of 204 [F]FDG patients, 35 [C]PiB patients and 1 [F]FET patient are used. The results show that by choosing an optimized value of [Formula: see text] in MLTR, the proposed algorithm improves the results compared to the standard MR-based attenuation correction methods (i.e. OSEM using the Dixon or the UTE attenuation maps), and the cross-talk and the scale problem are limited.
对于正电子发射断层扫描中的定量示踪剂分布,衰减校正是必不可少的。在PET/CT混合系统中,CT图像是生成衰减图的基础,但在PET/MR系统中,MR图像与衰减图没有类似的简单关系。因此,PET/MR系统中的衰减校正更具挑战性。通常使用两种MR序列中的一种:狄克逊(Dixon)或超短时间回波(UTE)技术。然而,这些序列有一些众所周知的局限性。在本研究中,提出了一种基于改进和优化的非飞行时间最大似然期望最大化(non-TOF MLAA)的重建技术用于PET/MR脑成像。其思路是利用从UTE序列和T1加权MR图像计算出的衰减图像中的一些信息来调整最大似然期望最大化(MLTR)的参数。在这个MLTR算法中,引入并优化了一个参数,以便将算法驱动到与发射数据最一致的最终衰减图。由于使用了非飞行时间最大似然期望最大化(non-TOF MLAA),提出了一种减少串扰效应的技术。在本研究中,将所提出的算法与常用的重建方法进行比较,如使用CT衰减图的有序子集最大期望值(OSEM)(作为参考)以及使用狄克逊和UTE衰减图的OSEM。为了展示所提出算法的稳健性和可重复性,使用了一组204例[F]FDG患者、35例[C]PiB患者和1例[F]FET患者。结果表明,通过在MLTR中选择优化的参数值,与基于标准MR的衰减校正方法(即使用狄克逊或UTE衰减图的OSEM)相比,所提出的算法改善了结果,并且串扰和尺度问题得到了限制。