Davey James A, Chica Roberto A
Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5.
Protein Sci. 2015 Apr;24(4):545-60. doi: 10.1002/pro.2618. Epub 2015 Jan 13.
Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain β1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics.
计算蛋白质设计(CPD)预测高度依赖于所使用的输入模板的结构。然而,尚不清楚模板几何结构中的微小差异如何转化为稳定性预测准确性的巨大差异。在此,我们探讨了输入模板的结构变化如何影响CPD稳定性预测的结果。为此,我们通过旋转异构体优化和能量最小化(ROM)制备了替代模板,并使用它们来概括84个蛋白质G结构域β1突变序列的稳定性。在ROM过程中,野生型(WT)或突变序列的侧链旋转异构体在模板最小化之前在晶体或核磁共振(NMR)结构上进行优化,从而产生称为ROM模板的替代结构。我们表明,与使用最小化的晶体或NMR结构相比,使用从已知稳定的序列制备的ROM模板主要会提高预测准确性。相反,从比WT不稳定的序列制备的ROM模板会通过增加假阳性的数量来降低预测准确性。这些观察到的预测结果变化归因于ROM模板中旋转异构体形成的侧链接触的差异。最后,我们表明,从不折叠或采用非天然折叠的序列制备的ROM模板分别导致也不折叠或采用非天然折叠的序列的选择性富集。我们的结果证明了由输入模板引起的旋转异构体偏差的存在,该偏差可用于使预测偏向显示所需特征的序列。