Suppr超能文献

多态方法在计算蛋白质设计中的应用。

Multistate approaches in computational protein design.

机构信息

Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.

出版信息

Protein Sci. 2012 Sep;21(9):1241-52. doi: 10.1002/pro.2128. Epub 2012 Aug 10.

Abstract

Computational protein design (CPD) is a useful tool for protein engineers. It has been successfully applied towards the creation of proteins with increased thermostability, improved binding affinity, novel enzymatic activity, and altered ligand specificity. Traditionally, CPD calculations search and rank sequences using a single fixed protein backbone template in an approach referred to as single-state design (SSD). While SSD has enjoyed considerable success, certain design objectives require the explicit consideration of multiple conformational and/or chemical states. Cases where a "multistate" approach may be advantageous over the SSD approach include designing conformational changes into proteins, using native ensembles to mimic backbone flexibility, and designing ligand or oligomeric association specificities. These design objectives can be efficiently tackled using multistate design (MSD), an emerging methodology in CPD that considers any number of protein conformational or chemical states as inputs instead of a single protein backbone template, as in SSD. In this review article, recent examples of the successful design of a desired property into proteins using MSD are described. These studies employing MSD are divided into two categories--those that utilized multiple conformational states, and those that utilized multiple chemical states. In addition, the scoring of competing states during negative design is discussed as a current challenge for MSD.

摘要

计算蛋白质设计(CPD)是蛋白质工程师的有用工具。它已成功应用于创建具有更高热稳定性、改善结合亲和力、新颖酶活性和改变配体特异性的蛋白质。传统上,CPD 计算使用单一固定蛋白质骨架模板搜索和排序序列,这种方法称为单态设计(SSD)。虽然 SSD 取得了相当大的成功,但某些设计目标需要明确考虑多种构象和/或化学状态。“多态”方法可能优于 SSD 方法的情况包括将构象变化设计到蛋白质中、使用天然集合来模拟骨架灵活性,以及设计配体或寡聚体结合特异性。这些设计目标可以通过多态设计(MSD)有效地解决,这是 CPD 中的一种新兴方法,它将任意数量的蛋白质构象或化学状态作为输入,而不是像 SSD 那样使用单个蛋白质骨架模板。在这篇综述文章中,描述了使用 MSD 将所需特性成功设计到蛋白质中的最新实例。这些使用 MSD 的研究分为两类——那些利用多个构象状态的研究,以及那些利用多个化学状态的研究。此外,还讨论了在负设计过程中对竞争状态的评分,这是 MSD 的一个当前挑战。

相似文献

1
Multistate approaches in computational protein design.
Protein Sci. 2012 Sep;21(9):1241-52. doi: 10.1002/pro.2128. Epub 2012 Aug 10.
2
Multistate Computational Protein Design with Backbone Ensembles.
Methods Mol Biol. 2017;1529:161-179. doi: 10.1007/978-1-4939-6637-0_7.
3
An efficient algorithm for multistate protein design based on FASTER.
J Comput Chem. 2010 Apr 15;31(5):904-16. doi: 10.1002/jcc.21375.
4
Positive multistate protein design.
Bioinformatics. 2020 Jan 1;36(1):122-130. doi: 10.1093/bioinformatics/btz497.
7
Molecular flexibility in computational protein design: an algorithmic perspective.
Protein Eng Des Sel. 2021 Feb 15;34. doi: 10.1093/protein/gzab011.
9
A generic program for multistate protein design.
PLoS One. 2011;6(7):e20937. doi: 10.1371/journal.pone.0020937. Epub 2011 Jul 6.
10
Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.
PLoS Comput Biol. 2015 Sep 23;11(9):e1004335. doi: 10.1371/journal.pcbi.1004335. eCollection 2015.

引用本文的文献

1
Optimizing the breadth of SARS-CoV-2-neutralizing antibodies in vivo and in silico.
Hum Vaccin Immunother. 2025 Dec;21(1):2526873. doi: 10.1080/21645515.2025.2526873. Epub 2025 Jul 21.
2
Designing Enzymatic Reactivity with an Expanded Palette.
Chembiochem. 2025 Jun 3;26(11):e202500076. doi: 10.1002/cbic.202500076. Epub 2025 Apr 4.
3
Deep learning guided design of dynamic proteins.
bioRxiv. 2024 Jul 19:2024.07.17.603962. doi: 10.1101/2024.07.17.603962.
4
A de novo designed coiled coil-based switch regulates the microtubule motor kinesin-1.
Nat Chem Biol. 2024 Jul;20(7):916-923. doi: 10.1038/s41589-024-01640-2. Epub 2024 Jun 7.
5
A general computational design strategy for stabilizing viral class I fusion proteins.
Nat Commun. 2024 Feb 13;15(1):1335. doi: 10.1038/s41467-024-45480-z.
6
De novo protein design-From new structures to programmable functions.
Cell. 2024 Feb 1;187(3):526-544. doi: 10.1016/j.cell.2023.12.028.
7
Design of efficient artificial enzymes using crystallographically-enhanced conformational sampling.
bioRxiv. 2023 Nov 2:2023.11.01.564846. doi: 10.1101/2023.11.01.564846.
8
Computational remodeling of an enzyme conformational landscape for altered substrate selectivity.
Nat Commun. 2023 Sep 28;14(1):6058. doi: 10.1038/s41467-023-41762-0.
9
Disentangling contact and ensemble epistasis in a riboswitch.
Biophys J. 2023 May 2;122(9):1600-1612. doi: 10.1016/j.bpj.2023.01.033. Epub 2023 Jan 28.
10
The road to fully programmable protein catalysis.
Nature. 2022 Jun;606(7912):49-58. doi: 10.1038/s41586-022-04456-z. Epub 2022 Jun 1.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5277-82. doi: 10.1073/pnas.1114487109. Epub 2012 Mar 7.
4
Iterative approach to computational enzyme design.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3790-5. doi: 10.1073/pnas.1118082108. Epub 2012 Feb 22.
5
Solution structure of a minor and transiently formed state of a T4 lysozyme mutant.
Nature. 2011 Aug 21;477(7362):111-4. doi: 10.1038/nature10349.
6
A generic program for multistate protein design.
PLoS One. 2011;6(7):e20937. doi: 10.1371/journal.pone.0020937. Epub 2011 Jul 6.
8
Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20257-62. doi: 10.1073/pnas.1013910107. Epub 2010 Nov 8.
9
Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19838-43. doi: 10.1073/pnas.1012985107. Epub 2010 Nov 2.
10
Conformational diversity and computational enzyme design.
Curr Opin Chem Biol. 2010 Oct;14(5):676-82. doi: 10.1016/j.cbpa.2010.08.010. Epub 2010 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验