Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
Protein Sci. 2012 Sep;21(9):1241-52. doi: 10.1002/pro.2128. Epub 2012 Aug 10.
Computational protein design (CPD) is a useful tool for protein engineers. It has been successfully applied towards the creation of proteins with increased thermostability, improved binding affinity, novel enzymatic activity, and altered ligand specificity. Traditionally, CPD calculations search and rank sequences using a single fixed protein backbone template in an approach referred to as single-state design (SSD). While SSD has enjoyed considerable success, certain design objectives require the explicit consideration of multiple conformational and/or chemical states. Cases where a "multistate" approach may be advantageous over the SSD approach include designing conformational changes into proteins, using native ensembles to mimic backbone flexibility, and designing ligand or oligomeric association specificities. These design objectives can be efficiently tackled using multistate design (MSD), an emerging methodology in CPD that considers any number of protein conformational or chemical states as inputs instead of a single protein backbone template, as in SSD. In this review article, recent examples of the successful design of a desired property into proteins using MSD are described. These studies employing MSD are divided into two categories--those that utilized multiple conformational states, and those that utilized multiple chemical states. In addition, the scoring of competing states during negative design is discussed as a current challenge for MSD.
计算蛋白质设计(CPD)是蛋白质工程师的有用工具。它已成功应用于创建具有更高热稳定性、改善结合亲和力、新颖酶活性和改变配体特异性的蛋白质。传统上,CPD 计算使用单一固定蛋白质骨架模板搜索和排序序列,这种方法称为单态设计(SSD)。虽然 SSD 取得了相当大的成功,但某些设计目标需要明确考虑多种构象和/或化学状态。“多态”方法可能优于 SSD 方法的情况包括将构象变化设计到蛋白质中、使用天然集合来模拟骨架灵活性,以及设计配体或寡聚体结合特异性。这些设计目标可以通过多态设计(MSD)有效地解决,这是 CPD 中的一种新兴方法,它将任意数量的蛋白质构象或化学状态作为输入,而不是像 SSD 那样使用单个蛋白质骨架模板。在这篇综述文章中,描述了使用 MSD 将所需特性成功设计到蛋白质中的最新实例。这些使用 MSD 的研究分为两类——那些利用多个构象状态的研究,以及那些利用多个化学状态的研究。此外,还讨论了在负设计过程中对竞争状态的评分,这是 MSD 的一个当前挑战。