Suppr超能文献

通过整合似然比准确评估DNA混合物证据的权重。

Accurate assessment of the weight of evidence for DNA mixtures by integrating the likelihood ratio.

作者信息

Slooten Klaas

机构信息

Netherlands Forensic Institute, P.O. Box 24044, 2490 AA The Hague, The Netherlands; VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

出版信息

Forensic Sci Int Genet. 2017 Mar;27:1-16. doi: 10.1016/j.fsigen.2016.11.001. Epub 2016 Nov 16.

Abstract

Several methods exist for weight of evidence calculations on DNA mixtures. Especially if dropout is a possibility, it may be difficult to estimate mixture specific parameters needed for the evaluation. For semi-continuous models, the LR for a person to have contributed to a mixture depends on the specified number of contributors and the probability of dropout for each. We show here that, for the semi-continuous model that we consider, the weight of evidence can be accurately obtained by applying the standard statistical technique of integrating the likelihood ratio against the parameter likelihoods obtained from the mixture data. This method takes into account all likelihood ratios belonging to every choice of parameters, but LR's belonging to parameters that provide a better explanation to the mixture data put in more weight into the final result. We therefore avoid having to estimate the number of contributors or their probabilities of dropout, and let the whole evaluation depend on the mixture data and the allele frequencies, which is a practical advantage as well as a gain in objectivity. Using simulated mixtures, we compare the LR obtained in this way with the best informed LR, i.e., the LR using the parameters that were used to generate the data, and show that results obtained by integration of the LR approximate closely these ideal values. We investigate both contributors and non-contributors for mixtures with various numbers of contributors. For contributors we always obtain a result close to the best informed LR whereas non-contributors are excluded more strongly if a smaller dropout probability is imposed for them. The results therefore naturally lead us to reconsider what we mean by a contributor, or by the number of contributors.

摘要

现有多种用于计算DNA混合样本证据权重的方法。特别是当存在等位基因脱扣的可能性时,可能难以估计评估所需的混合样本特定参数。对于半连续模型,一个人对混合样本有贡献的似然比取决于指定的贡献者数量以及每个贡献者的脱扣概率。我们在此表明,对于我们所考虑的半连续模型,通过应用将似然比与从混合样本数据中获得的参数似然性进行积分的标准统计技术,可以准确获得证据权重。该方法考虑了属于每个参数选择的所有似然比,但属于能更好解释混合样本数据的参数的似然比在最终结果中占更大权重。因此,我们无需估计贡献者数量或他们的脱扣概率,而是让整个评估取决于混合样本数据和等位基因频率,这既是一个实际优势,也提高了客观性。使用模拟混合样本,我们将以这种方式获得的似然比与最佳信息似然比(即使用用于生成数据的参数的似然比)进行比较,并表明通过似然比积分获得的结果与这些理想值非常接近。我们研究了具有不同数量贡献者的混合样本的贡献者和非贡献者。对于贡献者,我们始终获得接近最佳信息似然比的结果,而对于非贡献者,如果为他们设定较小的脱扣概率,则会更有力地排除他们。因此,这些结果自然地促使我们重新思考贡献者或贡献者数量的含义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验