Suppr超能文献

细菌中 2-氧戊二酸/Fe(II)-依赖性加氧酶多样性和功能的综合观点。

Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria.

机构信息

Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.

Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.

出版信息

Biochim Biophys Acta Gen Subj. 2017 Feb;1861(2):323-334. doi: 10.1016/j.bbagen.2016.12.001. Epub 2016 Dec 3.

Abstract

BACKGROUND

The 2-oxoglutarate/Fe(II)-dependent oxygenase (2OG oxygenase) superfamily is extremely diverse and includes enzymes responsible for protein modification, DNA and mRNA repair, and synthesis of secondary metabolites.

METHODS

To investigate the evolutionary relationship and make functional inferences within this remarkably diverse superfamily in bacteria, we used a protein sequence similarity network and other bioinformatics tools to analyze the bacterial proteins in the superfamily.

RESULTS

The network based on experimentally characterized 2OG oxygenases reflects functional clustering. Networks based on all of the bacterial 2OG oxygenases from the Interpro database indicate that only few proteins in this superfamily are functionally defined. The uneven distribution of the enzymes supports the hypothesis that horizontal gene transfer plays an important role in 2OG oxygenase evolution. A hydrophobic tyrosine residue binding the primary substrates at the N-termini is conserved. At the C-termini, the iron-binding, oxoglutarate-binding, and hydrophobic motifs are conserved and coevolved. Considering the proteins in the family are largely unexplored, we annotated them by the Pfam database and hundreds of novel and multi-domain proteins are discovered. Among them, a two-domain protein containing an N-terminal peroxiredoxin domain and a C-terminal 2OG oxygenase domain was characterized enzymatically. The results show that the enzyme could catalyze the reduction of peroxide using 2-oxoglutarate as an electron donor.

CONCLUSIONS

Our observations suggest relatively low evolutionary pressure on the bacterial 2OG oxygenases and a straightforward electron transfer pathway catalyzed by the two-domain 2OG oxygenase.

GENERAL SIGNIFICANCE

This work enables an expanded understanding of the diversity, evolution, and functions of bacterial 2OG oxygenases.

摘要

背景

2- 酮戊二酸/Fe(II)-依赖性加氧酶(2OG 加氧酶)超家族具有极高的多样性,包括负责蛋白质修饰、DNA 和 mRNA 修复以及次生代谢物合成的酶。

方法

为了研究细菌中这个极其多样化的超家族的进化关系并进行功能推断,我们使用蛋白质序列相似性网络和其他生物信息学工具来分析该超家族中的细菌蛋白。

结果

基于实验表征的 2OG 加氧酶的网络反映了功能聚类。基于 Interpro 数据库中所有细菌 2OG 加氧酶的网络表明,该超家族中只有少数蛋白质具有明确的功能。酶的不均匀分布支持了水平基因转移在 2OG 加氧酶进化中发挥重要作用的假设。保守的是结合 N 末端初级底物的疏水性酪氨酸残基。在 C 末端,铁结合、酮戊二酸结合和疏水性基序是保守和共同进化的。考虑到该家族中的蛋白质在很大程度上尚未被探索,我们通过 Pfam 数据库对它们进行了注释,并发现了数百种新的和多结构域的蛋白质。其中,一种含有 N 端过氧化物酶结构域和 C 端 2OG 加氧酶结构域的双结构域蛋白被酶学特征化。结果表明,该酶可以利用 2- 酮戊二酸作为电子供体催化过氧化物的还原。

结论

我们的观察结果表明,细菌 2OG 加氧酶的进化压力相对较低,并且双结构域 2OG 加氧酶催化的电子转移途径直接。

一般意义

这项工作使我们能够更广泛地了解细菌 2OG 加氧酶的多样性、进化和功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验