Suppr超能文献

从固定图像重建果蝇胚胎中的ERK信号通路。

Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images.

作者信息

Lim Bomyi, Dsilva Carmeline J, Kevrekidis Ioannis G, Shvartsman Stanislav Y

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.

出版信息

Methods Mol Biol. 2017;1487:337-351. doi: 10.1007/978-1-4939-6424-6_25.

Abstract

The early Drosophila embryo provides unique opportunities for quantitative studies of ERK signaling. This system is characterized by simple anatomy, the ease of obtaining large numbers of staged embryos, and the availability of powerful tools for genetic manipulation of the ERK pathway. Here, we describe how these experimental advantages can be combined with recently developed microfluidic devices for high throughput imaging of ERK activation dynamics. We focus on the stage during the third hour of development, when ERK activation is essential for patterning of the future nerve cord. Our approach starts with an ensemble of fixed embryos stained with an antibody that recognizes the active, dually phosphorylated form of ERK. Each embryo in this ensemble provides a snapshot of the spatial and temporal pattern of ERK activation during development. We then quantitatively estimate the ages of fixed embryos using a model that links their morphology and developmental time. This model is learned based on live imaging of cellularization and gastrulation, two highly stereotyped morphogenetic processes at this stage of embryogenesis. Applying this approach, we can characterize ERK signaling at high spatial and temporal resolution. Our methodology can be readily extended to studies of ERK regulation and function in multiple mutant backgrounds, providing a versatile assay for quantitative studies of developmental ERK signaling.

摘要

早期果蝇胚胎为ERK信号通路的定量研究提供了独特的机会。该系统具有解剖结构简单、易于获得大量分期胚胎以及拥有用于ERK通路基因操作的强大工具等特点。在此,我们描述了如何将这些实验优势与最近开发的微流控设备相结合,用于ERK激活动力学的高通量成像。我们关注发育第三小时的阶段,此时ERK激活对于未来神经索的模式形成至关重要。我们的方法始于一组用识别ERK活性双磷酸化形式的抗体染色的固定胚胎。该组中的每个胚胎都提供了发育过程中ERK激活的时空模式的一个快照。然后,我们使用一个将胚胎形态与发育时间联系起来的模型定量估计固定胚胎的年龄。这个模型是基于细胞化和原肠胚形成的实时成像建立的,这是胚胎发育这个阶段的两个高度定型的形态发生过程。应用这种方法,我们可以在高时空分辨率下表征ERK信号通路。我们的方法可以很容易地扩展到多个突变背景下ERK调控和功能的研究,为发育性ERK信号通路的定量研究提供了一种通用的检测方法。

相似文献

1
Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images.
Methods Mol Biol. 2017;1487:337-351. doi: 10.1007/978-1-4939-6424-6_25.
2
Dynamics of Inductive ERK Signaling in the Drosophila Embryo.
Curr Biol. 2015 Jun 29;25(13):1784-90. doi: 10.1016/j.cub.2015.05.039. Epub 2015 Jun 18.
3
Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.
Dev Cell. 2019 Feb 11;48(3):361-370.e3. doi: 10.1016/j.devcel.2019.01.009.
4
In vivo live-analysis of cell cycle checkpoints in Drosophila early embryos.
Methods Mol Biol. 2011;782:75-92. doi: 10.1007/978-1-61779-273-1_7.
5
Analyzing ERK Signal Dynamics During Zebrafish Somitogenesis.
Methods Mol Biol. 2017;1487:367-378. doi: 10.1007/978-1-4939-6424-6_27.
7
Fluorescence imaging techniques for studying Drosophila embryo development.
Curr Protoc Cell Biol. 2008 Jun;Chapter 4:Unit 4.18. doi: 10.1002/0471143030.cb0418s39.
8
The Spatiotemporal Limits of Developmental Erk Signaling.
Dev Cell. 2017 Jan 23;40(2):185-192. doi: 10.1016/j.devcel.2016.12.002.
9
Parallel imaging of embryos for quantitative analysis of genetic perturbations of the Ras pathway.
Dis Model Mech. 2017 Jul 1;10(7):923-929. doi: 10.1242/dmm.030163. Epub 2017 May 11.

本文引用的文献

1
Dynamics of Inductive ERK Signaling in the Drosophila Embryo.
Curr Biol. 2015 Jun 29;25(13):1784-90. doi: 10.1016/j.cub.2015.05.039. Epub 2015 Jun 18.
2
Temporal ordering and registration of images in studies of developmental dynamics.
Development. 2015 May 1;142(9):1717-24. doi: 10.1242/dev.119396. Epub 2015 Apr 1.
3
The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization.
Dev Cell. 2013 Dec 23;27(6):648-55. doi: 10.1016/j.devcel.2013.11.006. Epub 2013 Dec 5.
4
ERK as a model for systems biology of enzyme kinetics in cells.
Curr Biol. 2013 Nov 4;23(21):R972-9. doi: 10.1016/j.cub.2013.09.033.
5
The RASopathies.
Annu Rev Genomics Hum Genet. 2013;14:355-69. doi: 10.1146/annurev-genom-091212-153523. Epub 2013 Jul 15.
6
Microfluidic trap array for massively parallel imaging of Drosophila embryos.
Nat Protoc. 2013 Apr;8(4):721-36. doi: 10.1038/nprot.2013.034. Epub 2013 Mar 14.
7
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
8
A microfluidic array for large-scale ordering and orientation of embryos.
Nat Methods. 2011 Feb;8(2):171-176. doi: 10.1038/nmeth.1548. Epub 2010 Dec 26.
9
Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17115-20. doi: 10.1073/pnas.0805239105. Epub 2008 Oct 24.
10
Nuclear trapping shapes the terminal gradient in the Drosophila embryo.
Curr Biol. 2008 Jun 24;18(12):915-9. doi: 10.1016/j.cub.2008.05.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验