Goyal Yogesh, Levario Thomas J, Mattingly Henry H, Holmes Susan, Shvartsman Stanislav Y, Lu Hang
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
Dis Model Mech. 2017 Jul 1;10(7):923-929. doi: 10.1242/dmm.030163. Epub 2017 May 11.
The Ras pathway patterns the poles of the embryo by downregulating the levels and activity of a DNA-binding transcriptional repressor Capicua (Cic). We demonstrate that the spatiotemporal pattern of Cic during this signaling event can be harnessed for functional studies of mutations in the Ras pathway in human diseases. Our approach relies on a new microfluidic device that enables parallel imaging of Cic dynamics in dozens of live embryos. We found that although the pattern of Cic in early embryos is complex, it can be accurately approximated by a product of one spatial profile and one time-dependent amplitude. Analysis of these functions of space and time alone reveals the differential effects of mutations within the Ras pathway. Given the highly conserved nature of Ras-dependent control of Cic, our approach provides new opportunities for functional analysis of multiple sequence variants from developmental abnormalities and cancers.
Ras信号通路通过下调DNA结合转录抑制因子Capicua(Cic)的水平和活性来塑造胚胎的两极。我们证明,在这一信号事件中Cic的时空模式可用于人类疾病中Ras信号通路突变的功能研究。我们的方法依赖于一种新型微流控装置,该装置能够对数十个活胚胎中的Cic动态进行平行成像。我们发现,尽管早期胚胎中Cic的模式很复杂,但它可以通过一个空间轮廓和一个时间依赖振幅的乘积精确近似。仅对这些时空功能进行分析,就能揭示Ras信号通路内突变的不同影响。鉴于Ras对Cic的调控具有高度保守性,我们的方法为分析发育异常和癌症中多个序列变异的功能提供了新机会。