Suppr超能文献

核捕获塑造了果蝇胚胎中的末端梯度。

Nuclear trapping shapes the terminal gradient in the Drosophila embryo.

作者信息

Coppey Mathieu, Boettiger Alistair N, Berezhkovskii Alexander M, Shvartsman Stanislav Y

机构信息

Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA.

出版信息

Curr Biol. 2008 Jun 24;18(12):915-9. doi: 10.1016/j.cub.2008.05.034.

Abstract

Patterning of the terminal regions of the Drosophila embryo relies on the gradient of phosphorylated ERK/MAPK (dpERK), which is controlled by the localized activation of the Torso receptor tyrosine kinase [1-4]. This model is supported by a large amount of data, but the gradient itself has never been quantified. We present the first measurements of the dpERK gradient and establish a new intracellular layer of its regulation. Based on the quantitative analysis of the spatial pattern of dpERK in mutants with different levels of Torso as well as the dynamics of the wild-type dpERK pattern, we propose that the terminal-patterning gradient is controlled by a cascade of diffusion-trapping modules. A ligand-trapping mechanism establishes a sharply localized pattern of the Torso receptor occupancy on the surface of the embryo. Inside the syncytial embryo, nuclei play the role of traps that localize diffusible dpERK. We argue that the length scale of the terminal-patterning gradient is determined mainly by the intracellular module.

摘要

果蝇胚胎末端区域的模式形成依赖于磷酸化的细胞外信号调节激酶/丝裂原活化蛋白激酶(dpERK)梯度,该梯度由躯干受体酪氨酸激酶的局部激活所控制[1-4]。大量数据支持这一模型,但该梯度本身从未被量化过。我们首次对dpERK梯度进行了测量,并建立了其调控的一个新的细胞内层次。基于对不同躯干水平突变体中dpERK空间模式的定量分析以及野生型dpERK模式的动态变化,我们提出末端模式形成梯度由一系列扩散捕获模块所控制。一种配体捕获机制在胚胎表面建立了躯干受体占据的高度局部化模式。在合胞体胚胎内部,细胞核起到捕获可扩散dpERK的作用。我们认为末端模式形成梯度的长度尺度主要由细胞内模块决定。

相似文献

1
Nuclear trapping shapes the terminal gradient in the Drosophila embryo.
Curr Biol. 2008 Jun 24;18(12):915-9. doi: 10.1016/j.cub.2008.05.034.
4
A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling.
EMBO J. 2007 Feb 7;26(3):668-77. doi: 10.1038/sj.emboj.7601532. Epub 2007 Jan 25.
5
Dynamics of Spaetzle morphogen shuttling in the embryo shapes gastrulation patterning.
Development. 2019 Nov 12;146(21):dev181487. doi: 10.1242/dev.181487.
6
Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis.
Curr Opin Genet Dev. 2011 Dec;21(6):719-25. doi: 10.1016/j.gde.2011.07.009. Epub 2011 Aug 19.
7
Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling.
Dev Biol. 2009 Nov 1;335(1):276-87. doi: 10.1016/j.ydbio.2009.09.002. Epub 2009 Sep 6.
9
A precise Bicoid gradient is nonessential during cycles 11-13 for precise patterning in the Drosophila blastoderm.
PLoS One. 2008;3(11):e3651. doi: 10.1371/journal.pone.0003651. Epub 2008 Nov 7.

引用本文的文献

1
A live-cell biosensor of in vivo receptor tyrosine kinase activity reveals feedback regulation of a developmental gradient.
Cell Rep. 2025 Jul 22;44(7):115930. doi: 10.1016/j.celrep.2025.115930. Epub 2025 Jun 27.
2
measurements of receptor tyrosine kinase activity reveal feedback regulation of a developmental gradient.
bioRxiv. 2025 Jan 7:2025.01.06.631605. doi: 10.1101/2025.01.06.631605.
5
Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early embryo.
bioRxiv. 2023 Mar 10:2023.03.09.531972. doi: 10.1101/2023.03.09.531972.
6
Pseudocleavage furrows restrict plasma membrane-associated PH domain in syncytial Drosophila embryos.
Biophys J. 2022 Jun 21;121(12):2419-2435. doi: 10.1016/j.bpj.2022.05.015. Epub 2022 May 18.
7
Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems.
Semin Cell Dev Biol. 2023 May 30;141:33-42. doi: 10.1016/j.semcdb.2022.04.013. Epub 2022 Apr 26.
8
Temporal integration of inductive cues on the way to gastrulation.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2102691118.
9
Molecular mechanisms underlying cellular effects of human MEK1 mutations.
Mol Biol Cell. 2021 Apr 19;32(9):974-983. doi: 10.1091/mbc.E20-10-0625. Epub 2021 Jan 21.
10
Optogenetic Rescue of a Patterning Mutant.
Curr Biol. 2020 Sep 7;30(17):3414-3424.e3. doi: 10.1016/j.cub.2020.06.059. Epub 2020 Jul 23.

本文引用的文献

1
Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo.
Rouxs Arch Dev Biol. 1986 Jul;195(5):302-317. doi: 10.1007/BF00376063.
2
Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein.
Dev Biol. 2007 Dec 15;312(2):623-30. doi: 10.1016/j.ydbio.2007.09.058. Epub 2007 Oct 6.
3
Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during Drosophila embryogenesis.
Development. 2007 Dec;134(23):4233-41. doi: 10.1242/dev.010934. Epub 2007 Oct 31.
4
Stability and nuclear dynamics of the bicoid morphogen gradient.
Cell. 2007 Jul 13;130(1):141-52. doi: 10.1016/j.cell.2007.05.026.
5
Dynamic regulation of ERK2 nuclear translocation and mobility in living cells.
J Cell Sci. 2006 Dec 1;119(Pt 23):4952-63. doi: 10.1242/jcs.03272. Epub 2006 Nov 14.
7
Quantifying the Gurken morphogen gradient in Drosophila oogenesis.
Dev Cell. 2006 Aug;11(2):263-72. doi: 10.1016/j.devcel.2006.07.004.
8
Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes.
J Biol Chem. 2006 Mar 31;281(13):8917-26. doi: 10.1074/jbc.M509344200. Epub 2006 Jan 17.
9
Dorsoventral axis formation in the Drosophila embryo--shaping and transducing a morphogen gradient.
Curr Biol. 2005 Nov 8;15(21):R887-99. doi: 10.1016/j.cub.2005.10.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验