School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
Clin Chim Acta. 2017 Jan;464:223-227. doi: 10.1016/j.cca.2016.11.039. Epub 2016 Dec 5.
Major depressive (MD) disorder is a serious psychiatric disorder that can result in suicidal behavior if not treated. The MD diagnosis using a standardized instrument instead of a structured interview will be advantageous for treatment and management of the MD, but so far no such technique exists. We developed an integrated analytical method of NMR-based metabolomics and least squares-support vector machine (LS-SVM) for predictive diagnosis of the MD.
The metabolite profiles in clinical plasma samples obtained from 72 depressive patients and 54 healthy subjects were analyzed by NMR spectroscopy. Then, LS-SVM models with different kernels were trained and tested using 80% and 20% of samples, respectively.
We found that the best performance for the MD prediction was achieved by LS-SVM equipped with RBF kernel. Moreover, the predictive performance of the MD using multi-biomarkers was largely improved as compared with that using a single biomarker. In this study, the LS-SVM-RBF using glucose-lipid signaling can achieve the MD prediction with the AUC values of 0.94 (0.89-0.99) in the training set and 0.96 (0.92-1.00) in the test set.
The LS-SVM-RBF using glucose-lipid signaling obtained from NMR spectroscopy can be used as an auxiliary diagnostic tool for the MD.
重度抑郁(MD)障碍是一种严重的精神障碍,如果不加以治疗,可能会导致自杀行为。使用标准化工具而不是结构化访谈对 MD 进行诊断将有利于 MD 的治疗和管理,但到目前为止还没有这样的技术。我们开发了一种基于 NMR 的代谢组学和最小二乘支持向量机(LS-SVM)的集成分析方法,用于 MD 的预测诊断。
通过 NMR 光谱分析来自 72 名抑郁患者和 54 名健康受试者的临床血浆样本中的代谢物谱。然后,分别使用 80%和 20%的样本训练和测试具有不同核的 LS-SVM 模型。
我们发现,使用 RBF 核的 LS-SVM 对 MD 预测的性能最佳。此外,与使用单一生物标志物相比,使用多生物标志物对 MD 的预测性能有了很大提高。在这项研究中,使用葡萄糖-脂质信号的 LS-SVM-RBF 可以在训练集中达到 0.94(0.89-0.99)的 AUC 值,在测试集中达到 0.96(0.92-1.00)的 MD 预测。
从 NMR 光谱获得的使用葡萄糖-脂质信号的 LS-SVM-RBF 可以用作 MD 的辅助诊断工具。