Lu C, Van Gestel T, Suykens J A K, Van Huffel S, Vergote I, Timmerman D
Department of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.
Artif Intell Med. 2003 Jul;28(3):281-306. doi: 10.1016/s0933-3657(03)00051-4.
In this work, we develop and evaluate several least squares support vector machine (LS-SVM) classifiers within the Bayesian evidence framework, in order to preoperatively predict malignancy of ovarian tumors. The analysis includes exploratory data analysis, optimal input variable selection, parameter estimation, and performance evaluation via receiver operating characteristic (ROC) curve analysis. LS-SVM models with linear and radial basis function (RBF) kernels, and logistic regression models have been built on 265 training data, and tested on 160 newly collected patient data. The LS-SVM model with nonlinear RBF kernel achieves the best performance, on the test set with the area under the ROC curve (AUC), sensitivity and specificity equal to 0.92, 81.5% and 84.0%, respectively. The best averaged performance over 30 runs of randomized cross-validation is also obtained by an LS-SVM RBF model, with AUC, sensitivity and specificity equal to 0.94, 90.0% and 80.6%, respectively. These results show that the LS-SVM models have the potential to obtain a reliable preoperative distinction between benign and malignant ovarian tumors, and to assist the clinicians for making a correct diagnosis.
在这项工作中,我们在贝叶斯证据框架内开发并评估了几种最小二乘支持向量机(LS-SVM)分类器,以便术前预测卵巢肿瘤的恶性程度。分析包括探索性数据分析、最优输入变量选择、参数估计以及通过受试者工作特征(ROC)曲线分析进行性能评估。基于线性核和径向基函数(RBF)核的LS-SVM模型以及逻辑回归模型已在265个训练数据上构建,并在160个新收集的患者数据上进行测试。具有非线性RBF核的LS-SVM模型在测试集上表现最佳,ROC曲线下面积(AUC)、灵敏度和特异度分别为0.92、81.5%和84.0%。通过LS-SVM RBF模型在30次随机交叉验证中也获得了最佳平均性能,AUC、灵敏度和特异度分别为0.94、90.0%和80.6%。这些结果表明,LS-SVM模型有潜力在术前可靠地区分良性和恶性卵巢肿瘤,并协助临床医生做出正确诊断。