Suppr超能文献

肝脏肿瘤边界检测:人类观察者与计算机边缘检测

Liver-tumor boundary detection: human observer vs computer edge detection.

作者信息

Williams D M, Bland P, Liu L, Farjo L, Francis I R, Meyer C R

机构信息

Department of Radiology, University of Michigan Hospitals, Ann Arbor 48109-0030.

出版信息

Invest Radiol. 1989 Oct;24(10):768-75. doi: 10.1097/00004424-198910000-00008.

Abstract

As a preliminary step in computing tumor volume, we developed a computer edge detection program to define the liver-tumor interface in computed tomography (CT) images. Computer program performance was tested using CT images from a lucite liver/tumor phantom; from normal livers containing computer-generated pseudotumors of known size, object contrast, and liver-tumor edge gradients; and from 12 abdominal livers containing 19 focal tumors, eight with well-defined and 11 with ill-defined borders. Calculated sizes of the tumor phantom and pseudo-tumors were compared with measured volumes and predetermined cross-sectional areas, respectively. In the absence of a truth standard for the size of the focal hepatic tumors, computer-calculated cross-sectional areas of the tumors were compared with the measurements made by an experienced interpreter of CT images using the trackball cursor at the CT console. The console measurements were made five times on separate days during a one-week period. The variability in the measured areas of these tumors averaged 7.1% for the well-defined tumors and 14.0% for the poorly defined tumors (P = 0.05). The edge-linking algorithm systematically overestimated the volumes of individual slices of the hemispherical tumors in the lucite phantom. Nevertheless, because of algorithm failure in the slices containing the poles of the hemispheres, errors in total tumor volumes were -2.1% for the 5.1 cm radius tumor, +1.2% for the 2.7 cm radius tumor, and +15% for the 1.8 cm radius tumor. The edge-linking algorithm was reasonably successful in calculating areas of pseudotumors with object contrast of 3.0% or greater and steep edge gradients.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

作为计算肿瘤体积的初步步骤,我们开发了一个计算机边缘检测程序,以在计算机断层扫描(CT)图像中界定肝脏-肿瘤界面。使用来自有机玻璃肝脏/肿瘤模型的CT图像、来自含有已知大小、物体对比度和肝脏-肿瘤边缘梯度的计算机生成假肿瘤的正常肝脏的CT图像,以及来自12个腹部肝脏(包含19个局灶性肿瘤,其中8个边界清晰,11个边界不清)的CT图像来测试计算机程序性能。分别将肿瘤模型和假肿瘤的计算大小与测量体积和预定横截面积进行比较。由于缺乏局灶性肝肿瘤大小的金标准,将计算机计算的肿瘤横截面积与CT控制台经验丰富的图像解读员使用跟踪球光标进行的测量结果进行比较。在一周内的不同日期对控制台测量进行了5次。这些肿瘤测量面积的变异性在边界清晰的肿瘤中平均为7.1%,在边界不清的肿瘤中为14.0%(P = 0.05)。边缘链接算法系统性地高估了有机玻璃模型中半球形肿瘤各个切片的体积。然而,由于包含半球极点的切片中算法失败,对于半径为5.1 cm的肿瘤,总肿瘤体积误差为-2.1%,对于半径为2.7 cm的肿瘤为+1.2%,对于半径为1.8 cm的肿瘤为+15%。边缘链接算法在计算物体对比度为3.0%或更高且边缘梯度陡峭的假肿瘤面积方面相当成功。(摘要截短于250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验