Department of Materials Science and Engineering, and ‡Department of Chemical Engineering, Stanford University , Stanford, California 94305-5025, United States.
ACS Appl Mater Interfaces. 2016 Dec 7;8(48):33264-33272. doi: 10.1021/acsami.6b09960. Epub 2016 Nov 23.
Area selective atomic layer deposition has the potential to significantly improve current fabrication approaches by introducing a bottom-up process in which robust and conformal thin films are selectively deposited onto patterned substrates. In this paper, we demonstrate selective deposition of dielectrics on metal/dielectric patterns by protecting metal surfaces using alkanethiol blocking layers. We examine alkanethiol self-assembled monolayers (SAMs) with two different chain lengths deposited both in vapor and in solution and show that in both systems, thiols have the ability to block surfaces against dielectric deposition. We show that thiol molecules can displace Cu oxide, opening possibilities for easier sample preparation. A vapor-deposited alkanethiol SAM is shown to be more effective than a solution-deposited SAM in blocking ALD, even after only 30 s of exposure. The vapor deposition also results in a much better thiol regeneration process and may facilitate deposition of the SAMs on porous or three-dimensional structures, allowing for the fabrication of next generation electronic devices.
区域选择性原子层沉积有可能通过引入自下而上的工艺来显著改善当前的制造方法,该工艺可在图案化衬底上选择性地沉积稳健且保形的薄膜。在本文中,我们通过使用烷硫醇阻挡层来保护金属表面,证明了在金属/电介质图案上选择性沉积电介质。我们研究了两种不同链长的烷硫醇自组装单分子层(SAM),分别在蒸气和溶液中沉积,并表明在这两种体系中,硫醇都有能力阻止电介质的沉积。我们表明,硫醇分子可以置换 Cu 氧化物,为更简单的样品制备开辟了可能性。即使仅暴露 30 秒,气相沉积的烷硫醇 SAM 也比溶液沉积的 SAM 更有效地阻止原子层沉积。气相沉积还导致更好的硫醇再生过程,并可能促进 SAM 在多孔或三维结构上的沉积,从而制造下一代电子设备。