Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK.
Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France.
Nat Rev Endocrinol. 2017 May;13(5):257-267. doi: 10.1038/nrendo.2016.193. Epub 2016 Dec 9.
The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.
下丘脑和垂体前叶新的功能适应的发现,改变了我们对它们相互作用的理解。一小部分下丘脑神经元的活动可以控制复杂的激素信号传递,这种信号传递与简单的刺激以及随后的激素分泌关系是分离的,并且依赖于生理状态。下丘脑神经元和垂体细胞的终末与脉管系统的相互关系,在决定神经激素暴露的模式方面起着重要作用。垂体中的细胞形成具有独特组织特征的网络,这些特征与输出的持续时间和模式有关,并且这些网络的修饰发生在不同的生理状态下,在需求停止后仍然存在,并导致功能增强。因此,下丘脑和垂体不能再被认为具有简单的分层关系:与脉管系统一起,它们形成了一个三部分系统,必须协同工作,以适当调节下丘脑的生理过程,如生殖。对这些调节特征的机制的更好理解,对当前和未来纠正下丘脑-垂体轴缺陷的治疗方法具有重要意义。此外,适当的网络组织的重现,将是再生干细胞治疗的一个重要挑战。