Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China.
College of Information Engineering, Northwest A&F University , Yangling 712100, China.
ACS Nano. 2016 Dec 27;10(12):11434-11441. doi: 10.1021/acsnano.6b07030. Epub 2016 Dec 9.
Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.
现代密码学越来越多地使用物理源生成的随机数来替代传统的基于软件的伪随机数,主要是因为信息安全对真正随机数的不可预测、不可破译的加密密钥的巨大需求。到目前为止,真正的随机数的唯一演示是通过热噪声和/或量子效应产生的,这需要昂贵和复杂的设备。在本文中,我们展示了一种通过使用摩擦电技术从自然界中收集随机信号来自我供电产生真正随机数的方法。这种基于液体-介电界面上的耦合摩擦电和静电感应效应的随机数发生器包括一个精心设计的具有不规则光栅结构的摩擦发电机 (TENG)、一个电子-光学器件和一个光电器件。通过 TENG 收集雨滴的随机特征,然后通过具有非线性特性的电子-光学器件和光电器件进行转换和转换。机械、电气和光学信号的协同作用确保了发生器具有复杂的非线性输入-输出行为,并有助于增加随机性。使用熟悉的算法从光电设备接收到的最终电信号中推导出随机数序列。这些获得的随机数序列表现出良好的统计特性、不可预测性和不可重复性。我们的研究提供了一种简单、实用、有效的产生真正随机数的方法,可广泛应用于密码协议、数字签名、认证、识别和其他信息安全领域。