McKary Magy G, Abendroth Jan, Edwards Thomas E, Johnson R Jeremy
Department of Chemistry, Butler University , 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States.
Beryllium Discovery Corporation, Seattle Structural Genomics Center for Infectious Disease (SSGCID) , 7869 Northeast Day Road West, Bainbridge Island, Washington 98110, United States.
Biochemistry. 2016 Dec 27;55(51):7099-7111. doi: 10.1021/acs.biochem.6b01057. Epub 2016 Dec 12.
The complex life cycle of Mycobacterium tuberculosis requires diverse energy mobilization and utilization strategies facilitated by a battery of lipid metabolism enzymes. Among lipid metabolism enzymes, the Lip family of mycobacterial serine hydrolases is essential to lipid scavenging, metabolic cycles, and reactivation from dormancy. On the basis of the homologous rescue strategy for mycobacterial drug targets, we have characterized the three-dimensional structure of full length LipW from Mycobacterium marinum, the first structure of a catalytically active Lip family member. LipW contains a deep, expansive substrate-binding pocket with only a narrow, restrictive active site, suggesting tight substrate selectivity for short, unbranched esters. Structural alignment reinforced this strict substrate selectivity of LipW, as the binding pocket of LipW aligned most closely with the bacterial acyl esterase superfamily. Detailed kinetic analysis of two different LipW homologues confirmed this strict substrate selectivity, as each homologue selected for unbranched propionyl ester substrates, irrespective of the alcohol portion of the ester. Using comprehensive substitutional analysis across the binding pocket, the strict substrate selectivity of LipW for propionyl esters was assigned to a narrow funnel in the acyl-binding pocket capped by a key hydrophobic valine residue. The polar, negatively charged alcohol-binding pocket also contributed to substrate orientation and stabilization of rotameric states in the catalytic serine. Together, the structural, enzymatic, and substitutional analyses of LipW provide a connection between the structure and metabolic properties of a Lip family hydrolase that refines its biological function in active and dormant tuberculosis infection.
结核分枝杆菌复杂的生命周期需要多种能量动员和利用策略,这由一系列脂质代谢酶来推动。在脂质代谢酶中,分枝杆菌丝氨酸水解酶的Lip家族对于脂质清除、代谢循环以及从休眠状态重新激活至关重要。基于针对分枝杆菌药物靶点的同源拯救策略,我们已经解析了来自海分枝杆菌的全长LipW的三维结构,这是催化活性Lip家族成员的首个结构。LipW含有一个深而广阔的底物结合口袋,仅有一个狭窄、受限的活性位点,这表明其对短链、无支链酯具有严格的底物选择性。结构比对强化了LipW这种严格的底物选择性,因为LipW的结合口袋与细菌酰基酯酶超家族的结合口袋最为紧密匹配。对两种不同的LipW同源物进行的详细动力学分析证实了这种严格的底物选择性,因为每个同源物都选择无支链的丙酰酯底物,而不考虑酯的醇部分。通过对整个结合口袋进行全面的取代分析,LipW对丙酰酯的严格底物选择性被归因于酰基结合口袋中由一个关键的疏水缬氨酸残基封闭的狭窄漏斗结构。极性、带负电荷的醇结合口袋也有助于底物定向以及催化丝氨酸中旋转异构体状态的稳定。总之,对LipW的结构、酶学和取代分析建立了Lip家族水解酶的结构与代谢特性之间的联系,这进一步明确了其在活动性和潜伏性结核感染中的生物学功能。