School of Molecular Sciences, Arizona State University , P.O. Box 871604, Tempe, Arizona 85287, United States.
Center for Applied Structural Discovery, The Biodesign Institute , Tempe, Arizona 85281, United States.
Anal Chem. 2017 Feb 7;89(3):1531-1539. doi: 10.1021/acs.analchem.6b03369. Epub 2017 Jan 9.
Separation of nucleic acids has long served as a central goal of analytical research. Innovations in this field may soon enable the development of rapid, on-site sequencing devices that significantly improve both the availability and accuracy of detailed bioinformatics. However, achieving efficient continuous-flow operation and size-based fractionation of DNA still presents considerable challenges. Current methods have not yet satisfied the need for rapid fractionation of size-heterogeneous nucleic acid samples into specific and narrow size distributions. Dielectrophoretic (DEP) mechanisms integrated in microfluidic devices offer unique advantages for such applications, including short processing times, microscale reaction volumes, and the potential for low cost and portability. To facilitate such developments, we have adapted a microfluidic constriction sorter device to separate a wide range of nucleic acid analytes into distinct microchannel outlets. This work demonstrates selective and tunable deflection of DNA using alternating current (AC) insulator-based dielectrophoresis. We report conditions for size-based DEP sorting of 1.0, 10.2, 19.5, and 48.5 kbp dsDNA analytes, including both plasmid and genomic DNA. Applied potentials range from 200 to 2400 V with frequencies ranging from 50 Hz to 20 kHz. These conditions result in sorting efficiencies up to 92% with a strong dependence on applied potentials and frequencies. In low-frequency AC fields, long DNA molecules form macro-ion clusters. This behavior is associated with an apparent shift from positive to negative DEP sorting behavior. Using a finite element model, we characterize the dynamics of sorting in the microdevice and link differential sorting to differences in dielectrophoretic mobility. We propose the use of a continuous-flow sorting strategy to facilitate future coupling to next generation sequencing approaches.
核酸分离长期以来一直是分析研究的核心目标。该领域的创新可能很快将使快速、现场测序设备得以开发,这将极大地提高详细生物信息学的可用性和准确性。然而,实现 DNA 的高效连续流动操作和基于大小的分级分离仍然存在相当大的挑战。目前的方法尚未满足将大小不均匀的核酸样品快速分级为特定和窄的大小分布的需求。集成在微流控装置中的介电泳(DEP)机制为此类应用提供了独特的优势,包括短处理时间、微尺度反应体积以及低成本和便携性的潜力。为了促进这些发展,我们已经对微流控收缩分选装置进行了改造,以将各种核酸分析物分离到不同的微通道出口中。这项工作展示了使用交流(AC)基于绝缘体的介电泳对 DNA 进行选择性和可调谐的偏转。我们报告了基于大小的 DEP 分选 1.0、10.2、19.5 和 48.5 kbp dsDNA 分析物的条件,包括质粒和基因组 DNA。应用电势范围为 200 至 2400 V,频率范围为 50 Hz 至 20 kHz。这些条件导致分选效率高达 92%,与施加电势和频率有很强的依赖性。在低频 AC 场中,长 DNA 分子形成宏观离子簇。这种行为与从正 DEP 分选行为到负 DEP 分选行为的明显转变有关。使用有限元模型,我们对微器件中的分选动力学进行了表征,并将差分分选与介电泳迁移率的差异联系起来。我们建议使用连续流动分选策略来促进与下一代测序方法的未来耦合。