Suppr超能文献

使用3D打印微混合器高通量制备纳米复合物

High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.

作者信息

Bohr Adam, Boetker Johan, Wang Yingya, Jensen Henrik, Rantanen Jukka, Beck-Broichsitter Moritz

机构信息

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

J Pharm Sci. 2017 Mar;106(3):835-842. doi: 10.1016/j.xphs.2016.10.027. Epub 2016 Dec 6.

Abstract

3D printing allows a rapid and inexpensive manufacturing of custom made and prototype devices. Micromixers are used for rapid and controlled production of nanoparticles intended for therapeutic delivery. In this study, we demonstrate the fabrication of micromixers using computational design and 3D printing, which enable a continuous and industrial scale production of nanocomplexes formed by electrostatic complexation, using the polymers poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Several parameters including polymer concentration, flow rate, and flow ratio were systematically varied and their effect on the properties of nanocomplexes was studied and compared with nanocomplexes prepared by bulk mixing. Particles fabricated using this cost effective device were equally small and homogenous but more consistent and controllable in size compared with those prepared manually via bulk mixing. Moreover, each micromixer could process more than 2 liters per hour with unaffected performance and the setup could easily be scaled-up by aligning several micromixers in parallel. This demonstrates that 3D printing can be used to prepare disposable high-throughput micromixers for production of therapeutic nanoparticles.

摘要

3D打印能够快速且低成本地制造定制化和原型设备。微混合器用于快速且可控地生产用于治疗递送的纳米颗粒。在本研究中,我们展示了使用计算设计和3D打印制造微混合器,这能够通过静电络合作用,使用聚(二烯丙基二甲基氯化铵)和聚(4-苯乙烯磺酸钠)聚合物,连续且大规模地生产纳米复合物。系统地改变了包括聚合物浓度、流速和流量比在内的几个参数,并研究了它们对纳米复合物性质的影响,并与通过本体混合制备的纳米复合物进行了比较。使用这种经济高效的设备制造的颗粒同样小且均匀,但与通过本体混合手动制备的颗粒相比,尺寸更一致且可控。此外,每个微混合器每小时可处理超过2升的液体,性能不受影响,并且通过将几个微混合器并联排列,该装置可以轻松扩大规模。这表明3D打印可用于制备用于生产治疗性纳米颗粒的一次性高通量微混合器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验